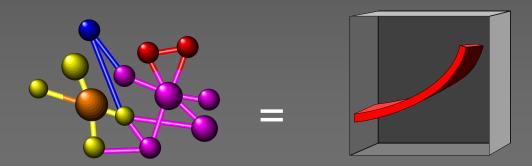

Understanding the Role of Material Properties in Simulations- Part 2

■ Hubert Lobo


Introduction - Virtual Manufacturing (CAE)

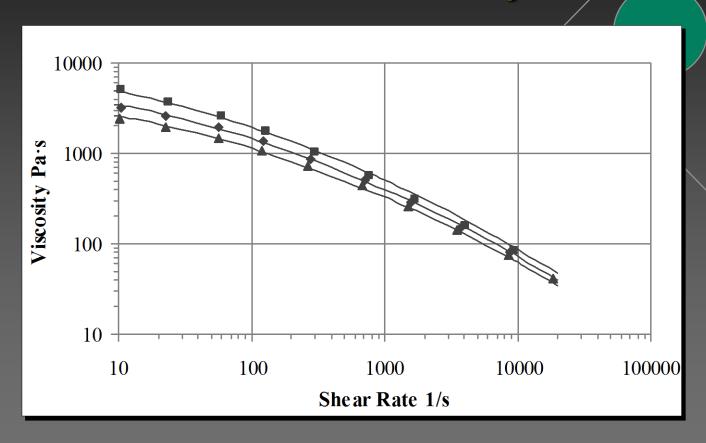
- The computer as a virtual process laboratory
 - understand the process
 - create and test scenarios
 - make improvements at design stage

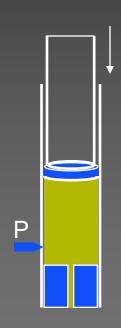
Introduction- Material Properties

- Plastics in simulation
 - Each plastic has a unique property profile
 - The importance of proper representation

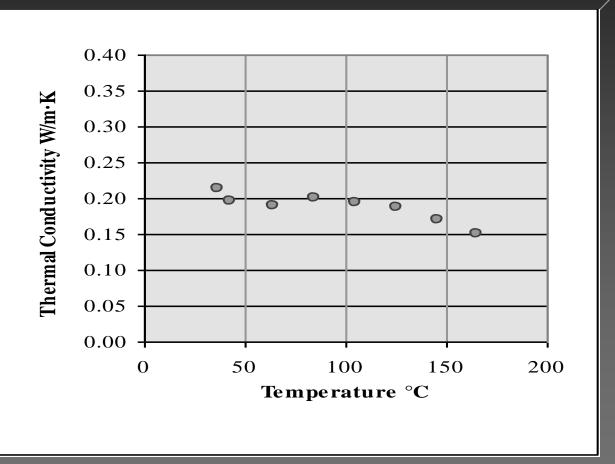
Scheme of presentation

- Define property requirements
- Identify evaluation parameters
- Follow the injection molding process
- Identify the role of material properties at each stage of the process

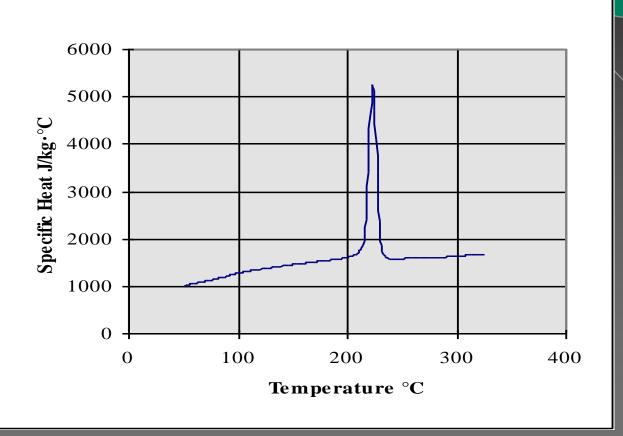

Modes of analysis- mold filling

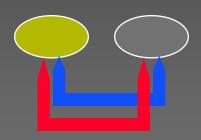

- mold filling
- mold cooling
- post filling simulations
- shrink/warp

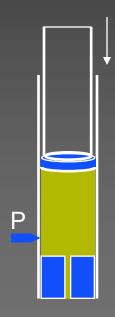
Data requirements- mold filling

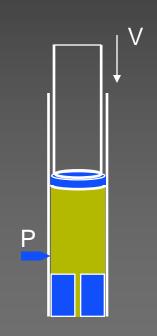

- viscosity v/s shear rate, temperature
- thermal conductivity v/s temperature
- specific heat v/s temperature
- melt density
- no flow temperature M
- eject temperature ^M
- transition temperature ^C

Viscosity

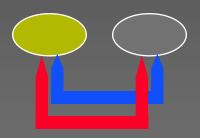


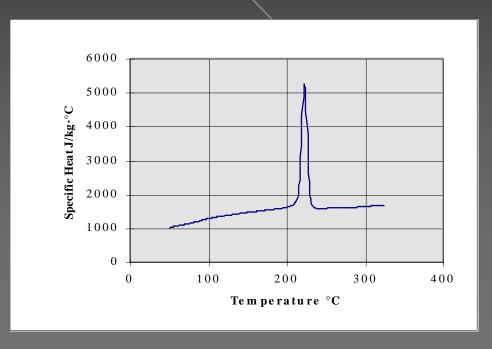

Thermal Conductivity


Specific Heat

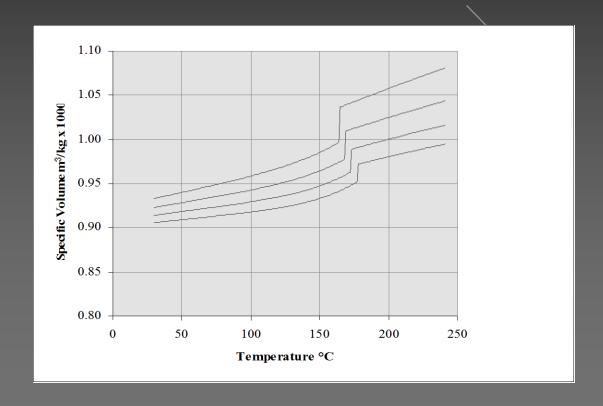

Melt Density

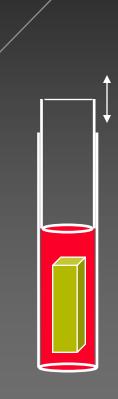
- High-pressure flow rate measurements
- Instrument-capillary rheometer


No Flow Temperature


- Moldflow requirement:
- Temperature at which flow ceases under a particular applied load. (133 Bar)
- Instrument-capillary rheometer

DSC Transitions


- Eject Temperature
- Transition Temperature


Additional Data - post filling

■ pvT

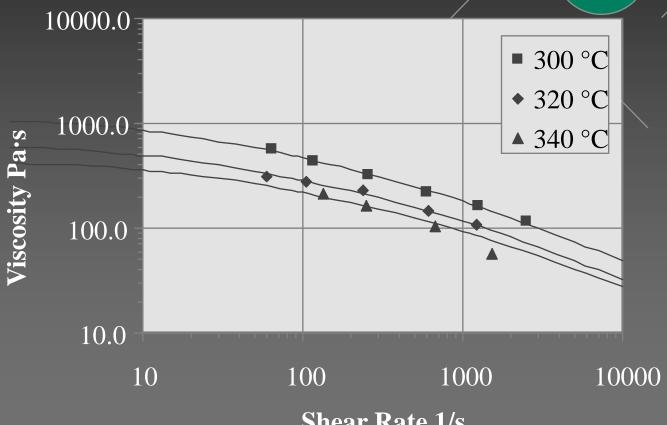
pvT

- A: High pressure dilatometry
- B: Piston-cylinder method
 - Temperature ranges
 - » Process to ambient
 - Pressure Range
 - » 0-200 MPa

Additional Data - Moldflow shrink/warp

■ Shrinkage/Warpage coefficients

Shrinkage coefficients


- Injection molding of grid-marked tags
- Different thicknesses
- Several process conditions
- Bidirectional measurement of shrinkage
- Correlate using Moldflow

- material property based parameters
- evaluate effects seen in the process
- understand and interpret simulation results
- compare materials
- develop criteria for selection based on desired processability

Properties of Evaluation Parameters

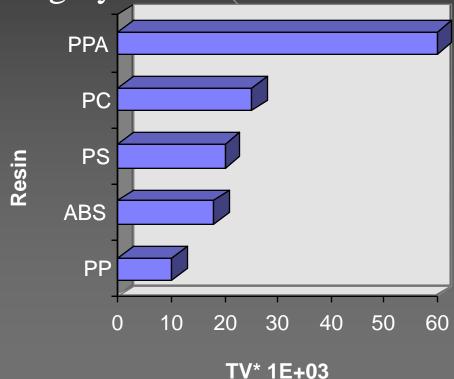
- Easily calculated
- Estimates of actual parameters
- Must be considered along with other relevant parameters

Viscosity

- Nature of the 2nd order matrix
 - Temperatures
 - » Tmelt
 - » Tmelt+20
 - » Tmelt-20
 - Shear rates
 - » 100
 - » 1000
 - » 10000

T	γ	η
Tmelt-20	1000	η1
Tmelt	100	η2
Tmelt	1000	η3
Tmelt	10000	η4
Tmelt+20	100	η5
Tmelt+20	1000	η6

- Temperature sensitivity of viscosity
 - $\text{TVL} = (\ln \eta 1 \ln \eta 3) / 20$
 - $\text{TVH} = (\ln \eta 3 \ln \eta 6) / 20$

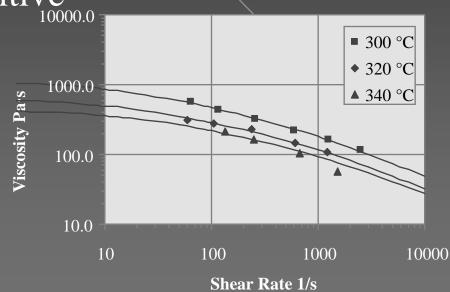

Т	γ	η
Tmelt-20	1000	η1
Tmelt	100	η2
Tmelt	1000	η3
Tmelt	10000	η4
Tmelt+20	100	η5
Tmelt+20	1000	η6

Rules

- if TV is large, material is highly sensitive
- -TVL > TVH
- Semi-crystalline

Amorphous

» TVL >> TVH



- Shear sensitivity of viscosity
 - Defining a limited power-law index.

» SHB= $(\ln \eta 3 - \ln \eta 4) / 2.303$

T	γ	η
Tmelt-20	1000	η1
Tmelt	100	η2
Tmelt	1000	η3
Tmelt	10000	η4
Tmelt+20	100	η5
Tmelt+20	1000	η6

- Rules
 - -0 < SHB < 1
 - Large SHB = shear sensitive
 - Important exception:
 - » broad newtonian
 (eg. PC)

- Thermal mass
 - TMASS=(rho*Cp)
 - units = J/m^3 .K
 - True measure of heat capacity
- Rules
 - Large TMASS = cools slowly
 - Large TMASS = more heat to remove

Steel
TMASS=3.6e6
Cp=460

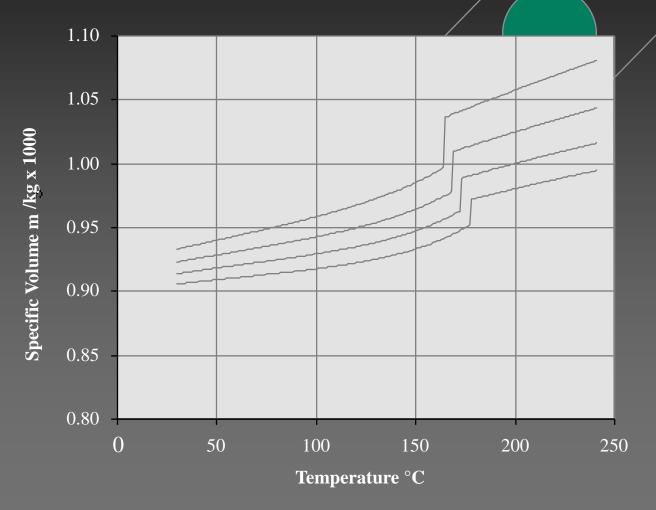
Plastic TMASS=1.9e6 Cp=1700

- Thermal diffusivity
 - $-\alpha = (k / TMASS)$
 - units = m^2/s
 - Measure of heat transfer rate
- Rules
 - Large α = cools quickly

PP/Talc

 α = 8.7e-8

k = 0.21


PP

 $\alpha = 7.7e-8$

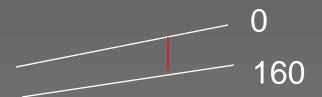
k = 0.17

- No-flow temperature
 - NOFLO
 - maps closely with crystallization temp
 - 20-30C higher than Tg (amorphous materials)

- Eject Temperature
 - EJECT
- Rules
 - High (EJECT TMOLD) = lower cycle time

- Nature of the PVT matrix
 - Temperatures
 - » TS1 TS7
 - » TB1-TB2
 - » TM1-TM4
 - Pressures
 - » 0 MPa
 - » 160 MPa

T	P	V
TS1	0	VS1
TS2	0	VS2
TS3	0	VS3
TS4	0	VS4
TS5	160	VS5
TS6	160	VS6
TS7	160	VS7
TB1	0	VB1
TB2	160	VB2
TM1	0	VM1
TM2	0	VM2
TM3	160	VM3
TM4	160	VM4


Volumetric expansion coefficient (VEC)

- -VEC=dV/dT
- VECS=(VS1-VS2) / (TS1-TS2)
- VECM=(VM1-VM2) / (TM1-TM2)

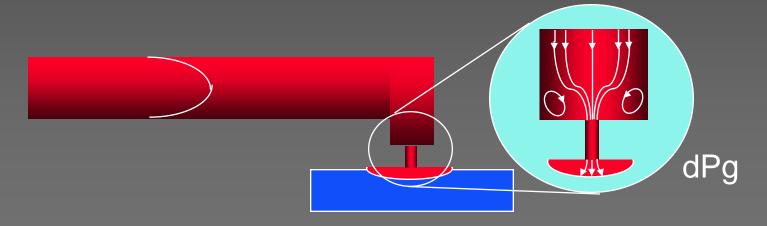
0 MPa

T	P	V
TS1	0	VS1
TS2	0	VS2
TS3	0	VS3
TS4	0	VS4
TS5	160	VS5
TS6	160	VS6
TS7	160	VS7
TB1	0	VB1
TB2	160	VB2
TM1	0	VM1
TM2	0	VM2
TM3	160	VM3
TM4	160	VM4

- Compressibility (COM)
 - -COM = dV/dP
 - $\overline{-\text{COMS} = (\text{VS}1\text{-VS}5) / 160}$
 - $\overline{-\text{COMM}} = (\text{VM1-VM3}) / 160$

T	P	V
TS1	0	VS1
TS2	0	VS2
TS3	0	VS3
TS4	0	VS4
TS5	160	VS5
TS6	160	VS6
TS7	160	VS7
TB1	0	VB1
TB2	160	VB2
TM1	0	VM1
TM2	0	VM2
TM3	160	VM3
TM4	160	VM4

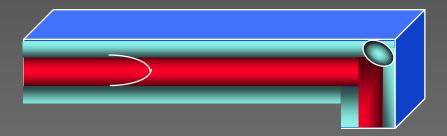
In the runner..


- very hot resin (TVH)
- high shear rate (SHB)
- viscous heating (TMASS, TVH)
- flow around corners (ηe)

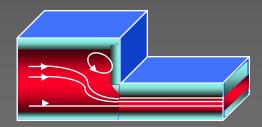
dPc

At the gate

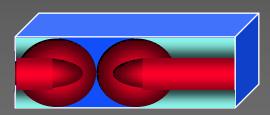
- extensional flow (ηe)
- very high shear rates (SHB)
- viscous heating (TMASS, TVH)


Within the part

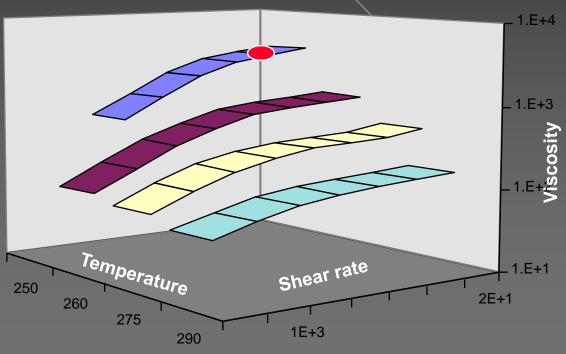
- Frozen layer formation
 - $-\alpha$
 - NOFLO
 - CRY


Within the part

- Flow around corners
 - additional pressure loss (ηe)


Within the part

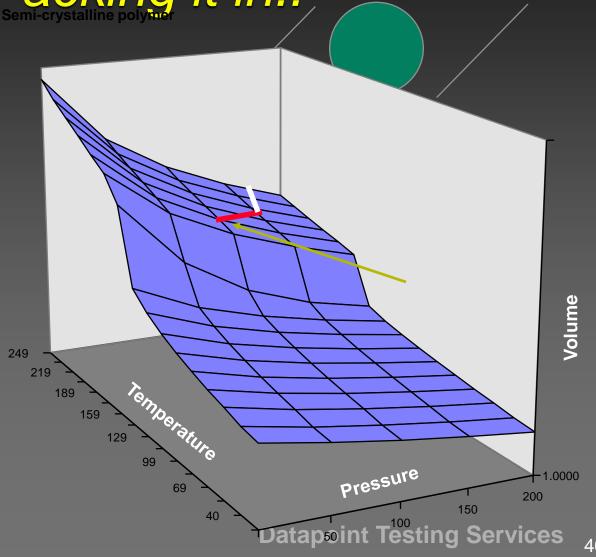
- Thick and thin sections
 - additional pressure loss (ηe)

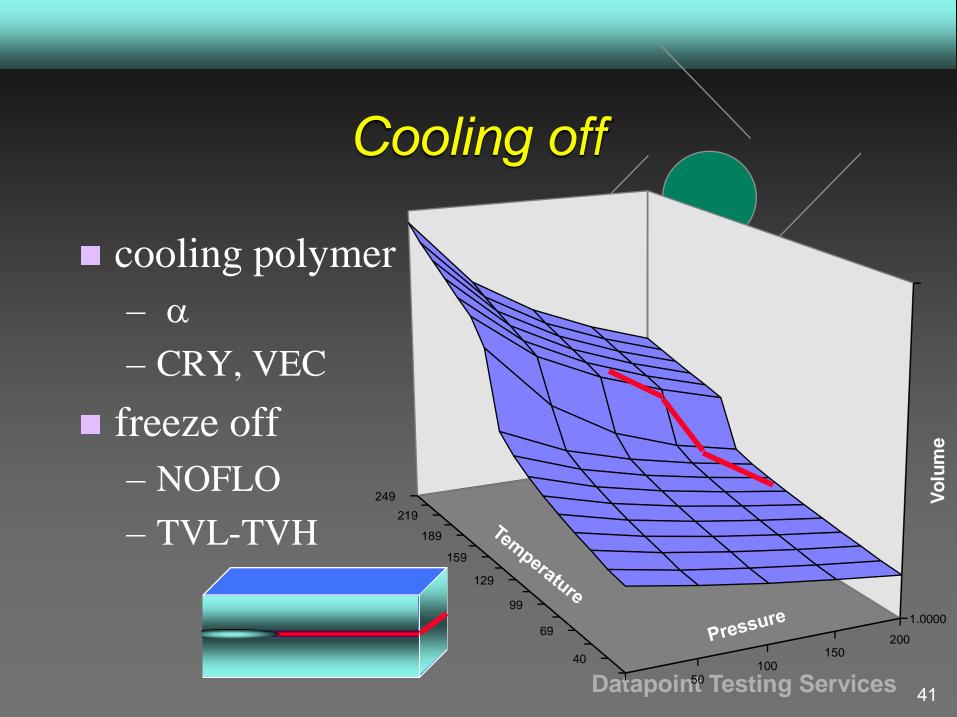

Weld lines...

- melt front temperature
 - $-\alpha$
- available pressure

End of fill

- low shear rates (TVL)
- low temperature

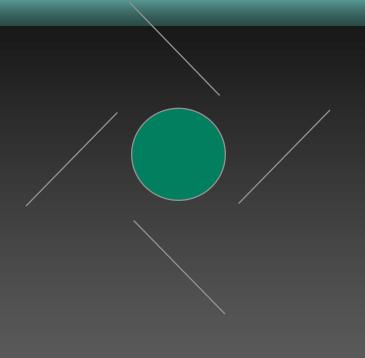



Packing it in...

– Factors:

» COMM

» TVL


Conclusion

- Evaluation parameters are:
 - tools to examine simulation results
 - aid in understanding resin behavior in the mold
 - aid in selection of resin based on desired processability
 - easy to calculate and use every day

Questions, call us; 1-888-DATA-4-CAE

Future considerations

- extensional flow situations
- accumulation of residual stresses
- stress relaxation
- warpage

Effect of viscosity

- shear thinning behavior reduces pressure penalty +
- high temperature sensitivity of viscosity -
- high pressure raises viscosity -
- high shear rate induces viscous heating +

Effect of thermal conductivity

- high solid conductivity reduces cycle time +
- high conductivity tightens process window -

Effect of PVT

- shows how plastic will solidify
- shows shrinkage level