

A Design-Validation-Production Workflow For Aerospace Additive Manufacturing

Robert Yancey, Sridhar Ravikoti, Leo Jeng, Aaron Leinmiller Altair Engineering Troy, MI Megan Lobdell, Brian Croop, Hubert Lobo DatapointLabs + Matereality Ithaca, NY, USA

Why we look at the Additive Manufacturing Technology?

Why Aerospace?

- Overall Goals:
 - Reduce Weight
 - Improve Performance
 - Reduce Costs
- Main Advantages:
 - Can use geometric complexity in achieving design goals without cost or time penalty
 - Part consolidation, feature integration is possible to avoid assembly issues
 - Direct production from 3D data enables customization
 - Pursue multimaterial, multifunctional designs along with geometric complexity
 - Ignore constraints of conventional manufacturing—learn constraints of AM processes

Project Impetus

- Increased interest in Additive Manufacturing
 - In-field deployment of 3D printed metal parts
 - Competition to metal castings
- Concern about anisotropy based on build plane and direction
 - Are printed parts different from conventionally manufactured parts?
 - Can FEA solvers simulate them with accuracy
- Concern about failure

Objective

- Validation Create an intermediate design step where we prove we can simulate with accuracy
- Upfront Design- Once we prove simulation accuracy, we create novel parts with confidence knowing that the simulation represents reality.

Current Work

- Create a 'standardized' 3D geometric shape
- Print geometric shape using DMLS
- Print and test tensile bars- stress-strain
- Validate elastic behavior of geometric shape with DIC strain measurement
- Break geometric shape
- Simulate and compare to experiment
- Quantify simulation accuracy

Altered Bike Crank Geometry

• Forces failure to the front (left) of the crank

Layout of print job

Direct Metal Laser Sintering

- CAD drawing discretized into geometric layers
- Laser sinters a layer of powder for the CAD geometry layer
- More powder is added for the next layer

Courtesy: Incodema3D

DMLS Parameters

Scan Speed (mm/s)	1300
Laser Power (W)	370
Laser Diameter (µm)	100-500
Hatching Distance (mm)	0.19
Layer Thickness (µm)	30
Hatching pattern offset	66°

Material EOS Aluminum AlSi10Mg

Element	Measured Concentration (%)
Silicon	9.7
Magnesium	0.35
Iron	0.19
Manganese	0.07
Copper	< 0.001
Zinc	< 0.002
Titanium	0.004
Aluminum	Balance

Validating Elastic behavior

Elastic Model-OptiStruct

- Mat1 elastic material models used
- Linear Static analysis used

- Small strains

Experimental setup

 Specimens are coated with a speckle pattern

Elastic Validation Measured Modulus (65.6 GPa)

Validating Failure

Failure Validation Comparing Simulation to Experiment

Technical conclusions

- There is a measurable difference between x and y direction material properties in the printing plane
 - Not significant enough to affect simulation for small strains
- DMLS parts can be simulated the same way as conventional products under similar conditions
 - OptiStruct can predict strain contours on DMLS specimens for small strains in the elastic region
 - RADIOSS can predict the progression of failure

Business Implications

- Validation is an essential step for 3D printing
- Validation confirms the ability of FEA to capture:
 - Printing anisotropy
 - FEA Solver accuracy
 - Material behavior : Elastic, Plasticity, Failure
- A 'standardized' geometry and load case must be used for quantifying simulation accuracy
- Helps manage risk with this novel process

Optimization and Analysis of 172 Cessna Bellcrank

Baseline Design

Loads and Boundary Conditions

- Load: 2168.5 N
- Fixed Translation at bolt holes
- Rotation allowed on top bolt hole

Design Objective

• Reduce volume/weight of part

• Ensure at least a safety factor of 2

Prevent deflection from exceeding 1/8"

Optimization Setup

Optimization Setup

- Objective: Minimize Mass
- Constraints:
 - -Safety Factor 2
 - Minimum member
 size of 4 mm

Run Optimizatio	n ·····×	
Name of run:	BellcrankMass 2nd Run	
Objective:	Minimize Mass 🗸	
Stress constraints:	None Minimum Safety Factor: 2	
Frequency constrai	nts:	
	None	
(CO),	 Maximize frequencies 	
See S	O Minimum: 20 Hz Apply to lowest 10 modes 🌲	
	Use supports from Load Case: No Supports 🗸	
Thickness constrai	nts:	
(TO)	Minimum: 4 mm	
and the	Maximum: 13.911 mm	
Speed/Accuracy: Contacts: ⊗	*	
	Sliding only	
1	 Sliding with separation 	
Gravity: 🛛		
Load Cases: 🛛		
Restore V	Export Run Close	

Initial Optimization Results

Baseline Design	Optimized Design	
Max Deflection		
0.002"	0.006"	
Peak Stress		
55.6 Mpa 100.6 Mpa		
% Mass Reduction		
52.6		

PolyNURB Translation to Geometry

Printed Design had vertical walls – eliminated need for post-processing to reduce stair steps

Analysis Results: Von Mises Strain

Analysis Results: Von Mises Stress

Lab Work on Bellcrank

DMLS Parameters

Scan Speed (mm/s)	1300
Laser Power (W)	370
Laser Diameter (µm)	100-500
Hatching Distance (mm)	0.19
Layer Thickness (µm)	30
Hatching pattern offset	66°

Material EOS Aluminum AlSi10Mg

Element	Measured Concentration (%)
Silicon	9.7
Magnesium	0.35
Iron	0.19
Manganese	0.07
Copper	< 0.001
Zinc	< 0.002
Titanium	0.004
Aluminum	Balance

Material Properties

Material information

Material	AlSi10Mg	
Young's Modulus	63122	MPa
Yield Stress	213.0041	MPa
Poisson's Ratio	0.331	
Failure Plastic Strain	0.02247295	mm/mm
Density	2.63E-09	tonne/mm^3

Chemical Analysis

Element	Measured Concentration (wt%)
Aluminum	Balance
Copper	<0.05
Iron	0.13
Magnesium	0.36
Manganese	<0.01
Nitrogen	<0.20
Nickel	<0.01
Lead	<0.01
Oxygen	0.10
Silicon	9.80
Tin	0.01
Titanium	<0.01
Zinc	<0.01
Other	<0.05

Test setup

- Bolted 4 pattern to t-shaped bracket
- Used pin+turn buckle to push down crank
- Set force cutoff at 2170N (crosshead velocity 4mm/min), in Universal Testing Machine Instron

Setup Pictures

Elastic Validation Comparing DIC von Mise's Strain using VIC 2d software

Final Performance Results

	Original	Optimized
Max Deflection (mm)	.051	.127
Peak Stress (Mpa)	55.6	86.7
Mass (kg)	0.138	0.080

- Significant Overdesign for Original Design
 - Factor of Safety and Peak Stress Constraints relaxed for Design Optimization
- 45% Mass Reduction

Conclusions

- Procedure Established to Validate Workflow for Design, Testing, Validation, and Certification for Aerospace DMLS Fabricated Parts
- Certification by Analysis with Experimental Substantiation is Viable
- Anisotropy of Material should be considered in future during optimization
- Significant opportunity for weight reduction using AM methods