Rate Dependency Plastic Modeling

expert material testing | CAE material parameters | CAE Validation | software & infrastructure for materials | materials knowledge | electronic lab notebooks

Considerations before testing or modeling

- What strain rates will your part see?
 - Remember strain rate is not the same as speed
 - Strain rates may not be uniform
- What is the environment?
 - Temperature
 - Exposure
 - Etc.
- What is the material?
 - Brittle/ductile
 - Rate sensitive or not (glass vs. plastic)
- What event are you trying to simulate
 - Energy absorption
 - Drop
 - Crash

Considerations before testing or modeling

- Material model selection
 - Can the model handle rate dependency?
 - Can the model handle failure?
 - Can the model handle the material (plastic, metal, foam, etc.)
- Can coupons be taken from the part?
 - If not, can a similar process be used to make coupons?
 - Worst case use molded specimens

Strain rate

- Strain rate is not uniform
 - Point of contact
 - Deformation causes reduction
 - Interaction of multiple parts may make it hard to calculate
- If possible do a pre-simulation with substitute material
- SR=(dL/L)/dt or V/L
- Very short time events

Test specimens

- ASTM D638Type V
 - Unfilled only
 - When space is limited
 - Short gauge length
- ISO 8256 Type 3
 - Filled or unfilled
 - Somewhat more space
 - Short gauge length
- Preparation
 - CNC from plaque
 - CNC from part
 - Molded
- Variability
 - processing
 - orientation
 - thickness

Material testing

- Moderate strain rates
 - Instron servo-hydraulic UTM
 - Contact extensometer (0.01-10 /s)
 - Dynamic load cell
 - -40C-150C
- Strain rate sensitivity is logarithmic
 - 0.01, 0.1, 1, 10, 10 /s

strengthening the materials core of manufacturing enterprises

Material testing

- High strain rates
 - Shimadzu HITS-T10
 - Up to 100- 2000 /s
 - Photron SA5 1M fps
 - Dynamic load cell
 - 1 µsec acquisition
 - Acceleration arm allows for speed attainment prior to engaging the specimen (no ramp up)
 - Only one in the US

Strain measurements

- Low strain rates:
 - contact
- High strain rates >10/s
 - Photron SA5 video camera (up to 1M fps)
 - Correlated solution DIC measurements

DatapointLabs

Plastics rate effects

- Modulus may be rate dependent
 - Few models can account for this behavior
 - Default use the stiffest modulus

- Failure may be rate dependent
 - Only a few material models can capture rate dependent failure
 - Compromise to lowest strain

Plastics rate effects

- Fiber fillers
 - Higher modulus
 - Small strain to failure
 - Brittle failure
 - No post-yield behavior
 - Anisotropy
 - May require third party software
- Temperature
 - Shortened post-yield region
 - Change the rate dependency

Breaking down the stress-strain curve

- Understand the stress-strain curve to better select a material model
 - Pre-yield
 - Modulus
 - Poisson's ratio
 - Proportional limit
 - Yield
 - Zero slope
 - Begin unravelling
 - Post-Yield
 - Material flow
 - Neck propagates
 - Break
 - Polymer chains break
 - · Simplest material models can be made with little data
 - Modulus/Poisson's ratio
 - Yield
 - Slope or hardening parameters of post-yield
 - Break or fail

- Types of rate dependent models
 - Input stress strain at all strain rates
 - A family curves is provided that include either total or plastic true strain versus stress
 - Usually a single modulus and single Poisson's ratio
 - MAT024 LCSS (load curve stress-strain)
 - SS curve changes shape
 - · Stress remains flat after end
 - More complex to make
 - More unstable
 - True stress vs. plastic strain

- · Scale up the quasi-static stress strain curve
 - Only a single stress strain curve is provided
 - Rate dependency ratio
 - Scale ratios based on quasi-static yield stress
- MAT024 LCSR (load curve strain rate)
 - Simple data preparation
 - Stable simulation
 - Fidelity to curves depends on QS
 - Table of yield stress with respect to QS yield stress versus strain rate
 - Commonly used formulation in many software (easy to translate)

RATE	
0.0100	1.000
0.100	1.128
1.00	1.221
10	1.295
100	1.384

742K133 PP - Ls-Dyna Mat_024 LCSR Calibration

- Scale up the quasi-static stress strain curve
 - Only a single stress strain curve is provided
 - Rate dependency ratio
 - Scale ratios based on quasi-static yield stress
- MAT024 C & P (Cowper-Symonds)
 - Equation used to scale SR
 - Stable simulation
 - Fidelity to curves depends on QS
 - C & P may not accurately depict actual strain rate sensitivity
 - Allows for simulations beyond tested strain rates
 - Commonly used formulation in many software (easy to translate)

1 +

- Simplified parameter model
 - Two domain slope formulation
 - Slope + hardening
- MAT019 (bilinear approach)
 - Useful for brittle materials (low plasticity)
 - Rate dependent modulus
 - Rate dependent failure
 - Not perfect match to curve shape

Considerations in model selection

- Highly ductile materials
 - Elements may become highly distorted
 - Post-yield stress strain curves tend to go negative slope
 - High rate dependent failure (ductile/brittle transition)
 - Maybe non-Von Mises yield surface
 - PP, PE, PC, TPE, PA, Unfilled
 - MAT24, MAT89, MAT187, *RATE DEPENDENT, Johnson-Cook, etc.
- Brittle materials
 - Little rate dependent failure
 - More scattered data
 - No necking
 - Modulus tends to be rate dependent as well
 - MAT19, Johnson-Cook, bilinear models

Verification & validation

- Unit element test (easy)
 - Can be performed by analyst
 - Simple check on whether the model is sensible
- Closed loop validation (moderately difficult)
 - Check if FEA returns the original material data
- Open loop validation (difficult)
 - Comparison to alternate or multi-mode experiment

Material testing PP

- Polypropylene
- 5 strain rates tensile (0.01-100 /s)
- Modulus and Poisson's ratio at QS
- ISO type 3 tensile bar cut from sheet
- High ductile/brittle transition

strengthening the materials core of manufacturing enterprises

Material testing ABS

- ABS
- 5 strain rates 0.01-100 /s
- Modulus and Poisson's ratio at QS
- ISO type 3 tensile bar cut from sheet
- Very little rate dependent strain to failure

strengthening the materials core of manufacturing enterprises

Material model

- MAT024: piecewise linear plasticity
 - Rate dependent elasto-plastic model
 - Three options for rate dependency (LCSS, CP, LCSR)
 - Singular value of failure strain; independent of strain rate
 - Visco-plasticity setting

Closed loop validation

- Reproduce original stress-strain data
- Settings
 - B.C.s:
 - Fixed bottom grip area
 - L.C.s:
 - Top moves at constant velocity: 953mm/s
 - Element: shell (Belytschko-Tsay)
 - 0.36mm²
 - Hourglass setting:1

Viscoplastic formulation options

- VP setting affects what parts of the strain rate tensor is used in stress calculation
 - -1 Cowper-Symonds with deviatoric strain rate
 - 0 total strain rate tensor
 - 1 only parts relating to plastic strain

Compare rate dependency formulations (ABS)

• VP=1 (in agreement with Bala, Day)

strengthening the materials core of manufacturing enterprises

Open loop validation

- Dynamic CAETestBench[™] model
- ASTM D3763 falling dart impact
- Multi-axial rate dependent loading (well-defined boundary conditions)
 - Dart
 - 12.7mm (¹/₂") rounded tip
 - weight = 22.68 kg
 - unlubricated
 - Clamp diameter = 76 mm
 - Disk dimensions
 - Thickness = $\sim 3 \text{ mm}$
 - ICs: impact velocity of 3.3m/s

Simulation: BCs and ICs

- Set-up
 - Plate thickness: 3.175mm
 - Dart diameter:12.7 mm
 - Dart weight: 23 kg
 - BCs: fixed edge
 - Impact velocity: 3.35m/s
- Outcome
 - Force v. time. Displacement
 - Max force

Falling dart validation results (first pass)

- LCSS performs best for each material
- ABS fails to reach correct fail time (deflection)
- PP matches quite well 4% variation
- Limitation in failure found for MAT24
 - · Look at advanced material model to see if improvements can be made

strengthening the materials core of manufacturing enterprises

Investigation of failure for ABS

- Investigate failure strains to see why they do not match
 - Tension fails at approximately 60% strain
 - Impact shows failure closer to 180%
 - Perform biaxial punch test (biaxial strain to fail =180%)
 - · Simulation agrees that we see almost pure biaxial strain

Biaxial Punch Test

Triaxiality Plot

strengthening the materials core of manufacturing enterprises

Failure strain extrapolation

- Plasticity data extrapolated to 1.2
- Failure strain from uniaxial test is premature for multi-axial deformation

Supplemental material testing ABS

- Define non-Von Mises yield surface
 - Tension
 - Compression
 - Shear
 - Post-yield Poisson's ratio (flow rule)
 - Allows for computation of true stress in post-yield

$$\sigma_t = \sigma_e (1 + \varepsilon_e)^{2\nu p}$$

• Default MAT24 uses constant Vp=0.5

Improvement using advanced model

- MAT_187 for ABS using tension, compression, and shear stressstrain curves
- Did not see improvement using the plastic Poisson's ratio
- Much better agreement with failure using advanced model

strengthening the materials core of manufacturing enterprises

Conclusions, part 1

- Rate dependent testing
 - Know strain rates of interest prior to testing
 - Collect data covering the entire span of strain rates
 - Use sophisticated techniques to acquire clean data
- Model selection
 - Never too early to think of the end results
 - Be aware there are other models out there
 - Start small
- Validation
 - Validations of the material model must be performed prior to scaling up
 - Helps point out limitation of material model
 - Helps make decision about possible improvements

Conclusions, part 2

- Falling dart impact test is a good benchmark for high strain-rate material models with ductile plastics
 - International standard for plastics
 - Multi-axial complexity
 - Easily replicated boundary conditions
- · Allows you to check the validity of simulation settings
 - Element formulation and hourglass settings effect simulation accuracy (doubles error in some cases)
 - visco-plasticity option = 1 best for ductile plastics

