Plastics in Simulation

expert material testing | CAE material parameters | CAE Validation | software & infrastructure for materials | materials knowledge | electronic lab notebooks

What makes plastics unique

- Non-linear elasticity
- Complex plasticity (pre-yield, post-yield)
- Viscoelastic (time-based behavior)
- Properties change over product operational temperature
- Properties change with environmental exposure

Behavioral classes

- Ductile
 - Post-yield behavior
- Brittle
 - No post-yield behavior
- Elastomeric
 - Hyperelastic with plasticity

Ductile polymer

- Behavior
 - Non-linear elastic
 - Yield point
 - Post-yield localization
 - Large strain to fail
- Typical Plastics
 - HDPE, LDPE...
 - PP
 - PC, ABS
 - PTFE

Brittle polymer

- Behavior
 - Linear elastic
 - Failure point
 - Small strain to fail
 - Stiff
- Typical Plastics
 - PS
 - Fiber-filled plastics

Rubbers and Elastomers

- Behavior
 - Hyperelastic
 - Post-yield plasticity
 - Large strain to fail
- Typical Plastics
 - TPE (santoprene)
 - TPU (polyurethanes)
 - SEBS, latex, silicone

Comparison

Testing of polymers

- Universal Testing M/c
- Extensometry for strain
- Stress-strain data

strengthening the materials core of manufacturing enterprises

Test specimens

- ASTM D638
 - Type 1 most plastics
 - Type IV elastomers
 - Type V rate dependency
- ISO 527
 - Type 1 most plastics
- ISO 8256
 - Type 3 rate dependency

Making test specimens

- Mold tensile bar
 - Most plastics
- Punch from sheet
 - Elastomers
- CNC from molded plaque
 - Fiber-filled plastics

Testing variables

- Test speed (strain rate)
- Temperature
- Environmental conditioning
- Orientation (fiber-filled plastics)

Test speeds

- Properties are rate dependent
 - To be considered later
- Solution
 - Use quasi-static data
 - Test to standard
 - 5 mm/min, constant speed

Engineering Tensile Stress-Strain Curves

Test temperature

- Properties are temperature dependent
- Solution
 - Test over product temperature range
 - Focus on worst case scenario
 - Watch for low temperature ductile-brittle transitions

Environmental conditioning

- Properties change with environmental exposure
 - More severe with some polymers
- Solution
 - Determine product use environment
 - Expose specimens to analogous environment
 - Heat aging
 - Moisture conditioning, weathering
 - Fluid exposure
 - In-vivo
 - Test at time intervals after exposure -> equilibrium

Linear Elastic models

- Elastic modulus + Poisson's ratio
 - UTM with 2 extensometers
 - Testing only in elastic region
- Material model:
 - ANSYS IsotropicElasticity
- Usage
 - NVH
 - Small deformation stiffness

Non-linear models

- True stress-strain curves
 - UTM with extensometers
 - Testing to yield or break
- Model: MISO (BISO)
 - · Reduce to elasto-plasticity based on yield point
 - Bilinear
 - Multi-linear
- Usage
 - Large deformation
 - von Mises yield or failure

MISO modeling

where,

E = elastic modulus (MPa) $\sigma_t = true stress (MPa)$ $\epsilon_p = plastic strain$

ANSYS CAE Modeler

Polymer elasto-plasticity

- Non-linear elasticity
- Elastic limit well below classical yield point
- Significant plastic strains prior to yield
- Post-yield with necking behavior

Comparing PC to AI

The question of yield

Non-linear elastic

Determining onset of plasticity

- Successive increasing strains followed by relaxation
 - Start at very small strains
 - Unload and allow to relax

Residual extension

Non-linear elastic limit

• "True" plastic point occurs below the defined yield

Elasto-plastic models for plastics

Pragmatic elasto-plasticity

TBPT,,0.0325639908732626,222281796 TBPT,,0.0359461267734691,224859272

Tangent modulus basis

Secant modulus basis

Fidelity to plastic point

Fidelity to curve shape

Understanding post-yield ductile behavior

Digital Image Correlation(DIC)

- Stereo camera system (ARAMIS)
- Simultaneous xyz dimension change
- Complete surface is measured
- Post-measurement selection of region of interest

Measuring post-yield stress-strain

y^↑

Ζ

Modeling up to yield

Modeling post-yield

Modeling brittle polymers

- Isotropic
 - PMMA, PS
- Anisotropic/Orthotropic
 - Fabric laminates
 - Fiber-filled plastics

Linear elastic or bilinear (BISO)

Handling weld line failure

- Test double-gated tensile bars
 - Actual process conditions
 - Obtain tensile strength at failure
- Now, obtain weld line location from injection mold analysis
- Model weld line with cohesive element
- Apply fail strength to element

Validation of elastic-plastic material models

- Create a process to validate solver+ simulation inputs before real-life application
- Benefits
 - Increase confidence
 - Reduce risk
 - Save time

CAETestBench validation mechanism

- Use a standardized geometry
 - May not be real-life part
- Test must be 'perfect'
 - Boundary conditions can be correctly simulated
 - Load case can be correctly simulated
- Comparison
 - Obtain test output that is also available in simulation
 - For example, DIC strain pattern, force v. time...

Overview of this validation

- Measure properties
- Obtain material model parameters
- Perform open loop validation
 - Not a test used to create the material model
- Simulate and compare to experiment with DIC
- Quantify simulation accuracy

Case 1: ribbed plaque 3-point bend

Test setup

- Instron 8872 UTM
- 1 mm/min displacement of nose
- Apply speckle pattern to part to allow use of DIC strain capture
- Two-camera DIC to capture 3D strain

Deformed part

- Loaded past yield
- Observed symmetric buckling inwards
- Slight indentation of support pins causing stress whitening on the reverse side of the part

Simulation setup

- Nose pin:
 - Constrained in all DOF with 2.5mm displaced in Z (quasi-static)
- Fixed support pins
- Part geometry constrained to prevent rigid body movement in the x y direction
- Contact applied in initial step
- Mesh: 2.25 mm²

Material model

- Tensile and density tests
 - Elastic
 - E = 1572 [MPa]
 - v = 0.29
 - Plastic curve (right)
 - Density
 - $\rho = 7.9 \text{ E-06 [tonne/mm3]}$
- Measured at QS speeds

Comparison: simulation to experiment

- Strain vs. Displacement
 - Diverges after 2 mm

- Force vs. Displacement
 - Similar response throughout

strengthening the materials core of manufacturing enterprises

Side-by-side comparison of strains

- Matched the strains in the legend for the DIC image for easy comparison
- The lower strains match closely but the shape of the higher strains on the experiment ends up more triangular than the simulation

Results

- Abaqus/Explicit models the elasto-plastic behavior of a ductile plastic up to moderate strains when complex modes of deformation are present (complex material model)
- At larger deformations the model deteriorates due to limitations of the elastic-plastic model (Lobo 2006)
- Limits of simulation validity can be applied. Deformations beyond 2 mm may produce inaccurate strain prediction.
- Although strains showed inaccuracy, force values were accurate to higher deformations.

Conclusions

- Plastics are complex
- Properties change considerably over product operating range
- Using correct material data can improve simulation accuracy
- Existing material models can be reasonably adapted to capture material behavior

