Framework for the Calibration and Validation of Multiscale Material Models

expert material testing | CAE material parameters | CAE Validation | software & infrastructure for materials | materials knowledge | electronic lab notebooks

Outline

Rationale

- Multi-scale material models are used to simulate behavior of composite materials.
- It is possible to predict:
 - performance of layups from single layer properties
 - performance of these composites under complex loadings

Work Plan

- Multi-scale MDS model is calibrated for UD composites
- MDS is used to simulate different kinds of layups.
- Manufactured layups are tested and compared to simulation in a validation step which provides a measure of the solution accuracy.

What do we mean by Multiscale?

DatapointLabs

Example Unidirectional Carbon Fiber Reinforced Plastics (CFRP) Scale0 (orMicroStructure)

Forward Homogenization

courtesy of Jeff Wollschlager/Altair Engineering

Inverse Characterization

Given Homogenized Linear Properties (E₁, E₂, ...) and the Matrix Linear Properties (E^m, v^m, ...) Calculate the Fiber Linear Properties (E₁^f, E₂^f, ...) $E_1^f = \frac{E_1 - E^m V^m}{V^f}$

courtesy of Jeff Wollschlager/Altair Engineering

Polymer Matrix Material Behavior

Two critical modes of polymer matrix behavior need to be characterized for Unidirectional Product Form

- 1. Matrix Brittle Behavior [90] Tension

Matrix Ductile Behavior

Carbon Fiber Material Behavior

Two critical modes of carbon fiber behavior need to be characterized for a Unidirectional Product Form

- 1. Fiber Brittle Behavior [0] Tension σ^t, ε^t
- 2. Fiber Instability Behavior [0] Compression σ^c , ε^c

Multiscale Material Model Development Test Matrix

Tested T700/2510 UD Carbon Fiber Composite

Test	Test Standard	Layup	Specimens per Panel	Total Panels	Total Specimens
0 Tension	ASTM D3039	[0] ₈	3	2	6
90 Tension	ASTM D3039	[90] ₁₆	3	2	6
[45/-45] Tension	ASTM D3518	$[45/-45]_{4s}$	3	2	6
0 Compression	ASTM D6641	[0] ₁₆	3	2	6
90 Compression	ASTM D6641	[90] ₁₆	3	2	6
[90/0] Tension *	ASTM D3039	[90/0] _{2s}	3	2	6
[90/0] Compression *	ASTM D6641	[90/0] _{4s}	3	2	6
[50/40/10] * OHT	ASTM D5766	[-45/02/45/90 /45/02/-45/0]s	3	2	6
			Totals	16	48

*Used for validation

Calibration Tests 0[°] deg. Tension

Calibration Tests- 90° Tension

Engineering Strain (%)

1.20

Acplus[®]

Engineering Stress (MPa)

Calibration Tests [45/-45] Tension

Calibration Tests 0° Compression

Calibration Tests 90° Compression

Simulation Comparison [90/0] Tension Applus

Simulation Comparison [10/80/10] Tension

--17-6

strengthening the materials core of manufacturing enterprises

Simulation Comparison [90/0] Compression

Simulation Comparison [10/80/10] Compression

Simulation Comparison [10/80/10] Compression

strengthening the materials core of manufacturing enterprises

Simulation Comparison [50/40/10] Compression

strengthening the materials core of manufacturing enterprises

Simulation Comparison [50/40/10] Compression

p

DatapointLabs

Open Hole Tension ([50/40/10] Video) Applus[®]

Simulation Comparison [50/40/10] Open Hole Tension

Shear Strain DIC Comparison

Summary Chart- UNT

UNT Modulus

Multiscale Designer
Experiment
strengthening the materials core of manufacturing enterprises

Summary Chart - UNC

UNC Modulus

UNC Strength

Summary

- We have a methodology to calibrate multiscale scale material models for unidirectional composite materials
- Using that model we can validate more complex layups
 - Both the stress-strain curves and the moduli, strength, and failure strain correlate well
 - The damage modes are over exaggerated due to how the failure criteria are imposed in the simulation
- Can also validate OHT experiment [50/40/10] layup

Thank You

