

Material Testing for SIGMASOFT

Douglas McMullen, Internal Sales Manager, Applus DatapointLabs

Introduction to Applus

- **€1.778 billion total** revenue (2019)
- 23,000 staff (2019)
- Present in more than **70 countries** across all continents
- Applus+ was on the Madrid Stock Exchange in May 2014

LABORATORIES DIVISION	IDIADA DIVISION	AUTOMOTIVE DIVISION	ENERGY & INDUSTRY DIVISION
 Testing Engineering Products & Systems	 Design & Engineering Testing Homologation services Proving ground 	 Statutory vehicle inspection	 Industrial and
Certification Multidisciplinary		services for safety and	environmental inspection Technical assistance Non-destructive testing
Laboratories		emissions	(NDT) Technical staffing

Vehicle In-Service

Asset design, construction and operation

Laboratories Division- Scope of Services

Testing Services					
Structural Testing	Materials Characterization & Quality Assurance	EMC & Wireless	Fire Testing	IT Security & Interoperability	Metrology & Calibration
 Highest load Test accredited for Aero sector as independent Lab 	 6 Material Testing Laboratories in Europe, USA & China 	 3 State of the art laboratories in Europe 	 Full Scale Fire Laboratory in Barcelona 	 3 Laboratories for product security evaluation and cybersecurity assessment in 	 Main focus in Spanish Local Market
 Fully accredited & mainly focus in Aeronautical sector 	 Fully accredited Labs for Aeronautical Sector 			Spain and China	

Laboratories Division- Scope of Products

LABORATORIES DIVISION

Applus+ Laboratories Division Sites

Spain | Head Quarters

Multi-technological Testing Laboratories Engineering & Manufacturing Several Sites in Spain Aerospace, Automotive, IT & Industry

NDT & NDT Equipment

USA | Punta Gorda (FL) Automated NDT Equipment Manufacturing **Aerospace**

USA | Thallassee (AL) NDT inspection for composites Aerospace

EMC Laboratories

UK | Silverstone Electrical & Electronics Automotive & Industry

Italy | Amaro (Udine) Electrical & Electronics Automotive & Industry

Fire Test Labs

Spain | Asturias Fire Safety in Tunnels Infrastructures

Spain | Madrid Product Fire Safety Construction & Industry

Spain | Barcelona Product Fire Safety Chemicals, Oil & Gas

Metrology & Calibration Labs

Spanish Network Barcelona Madrid Navarra A Coruña Albacete Sevilla

Mechanical Test Laboratories

France | St. Etiènne Mechanical & Materials Aerospace & industry

USA | Ithaca (NY) Materials Testing for Simulation & CAE Aerospace & Industry

TEC

Spain | Illescas Mechanical & Materials Aerospace

Germany | Bremen Mechanical & Materials Aerospace & Industry

China | Shanghai Mechanical & Materials IT payment systems Aerospace & IT

Norway | Bryne (Stavenger) Mechanical & Materials Oil & Gas

LABORATORIES DIVISION

Thermoplastics

- Viscosity
- Specific Heat
- DSC Transition Temperature
- Thermal Conductivity
- PVT
- Linear Shrinkage
- Viscoelastic Properties

Rheology

- Capillary viscosity
- Material is extruded through a restriction of known geometry (extremely high tolerance dies)
- Temperature and flow rate are controlled
- Pressure drop across the restriction is used to determine viscosity as a function of shear rate and temperature

- •Apparent Viscosity
- •Shear rate: $\dot{\gamma}_a = \frac{32Q}{\pi d^3}$ •Shear stress: $\tau_w = \frac{\Delta p d}{4L}$
 - •Shear viscosity: $\eta_a = \frac{\tau_w}{\dot{\gamma}_a}$
- Where: Q = Volume flow rate $\Delta p =$ Pressure drop
 - d = Capillary diameter
 - L = Capillary length

- •Corrections to viscosity
 - •Reservoir and friction losses (transducer located at die)
 - •End pressure drop (Bagley)
 - •Non-parabolic velocity (Rabinowitsch correction)

Rheology

rheology

•Bagley Correction Testing

- Perform viscosity measure on two different die ratios at equal shear rates
- Evaluate pressure differences between die geometries (capillary diameter remains the same)
- • τ = R/2(dP/dL)

Modeling

- •Viscosity Modeling
 - Very strong rheological models
 - Cross WLF, Cross Arrhenius
 - Combines a model of shear rate dependency with temperature dependency
 - Allows us to predict beyond testing range

n	0.28400
τ*	32096.1
D1	3.86E+13
D2	263.15
A1	30.87
A2	51.6

- •Evaluating Cross WLF Parameters
 - The parameters are tied to real physical behavior
 - N measures shear thinning behavior
 - $\ensuremath{\bullet}$ inverse of the power-law index
 - rules for N
 - 0 < N < 1
 - small N = shear sensitive
 - + $\boldsymbol{\tau^*}$ is the critical transition stress for shear-thinning behavior
 - \bullet if τ^* is large, wide Newtonian region
 - \bullet if τ^* is small, narrow Newtonian region
 - + τ^* is small for simple linear polymers
 - eg HDPE, LDPE, PP
 - + τ^* is large for polymers with large side chains
 - eg. PC

Modeling

1000

100

10

1

10

100

Shear Rate (s⁻¹)

1000

Viscosity (Pa•s)

•Evaluating	Cross	WLF	Parameters
-------------	-------	-----	------------

- D1 is coupled to the WLF temperature dependency equation
- No direct relevance
- D2 is the reference temperature
- Theoretically where h goes to infinity
- A1 & A2 WLF parameters
- A1 defines the temperature sensitivity of viscosity
- A2 defines change in temperature sensitivity with temperature

n

□ 190 °C ◇ 220 °C

250 °C

100000

10000

0.28400

Considerations for Testing

- Limited shear rates
 - Typically 10-10000 /s
 - Optional to go up to 100000 /s (uses smaller die)
- Residence times are longer in testing
 - Testing takes several minutes (approx. 6-10 min.)
 - Need to worry about thermal stability
- Processing temperatures are typically higher than test temperatures
- Typically testing is performed at two temperatures within the processing range and one below

Problematic Materials

- Moisture sensitive materials
 - Improperly dried materials cause reduction in viscosity
 - Over-dried materials cause a rise in viscosity
 - PET, PA, PC, PBT etc.
- Highly filled materials
 - Can "log jam" the die entrance
 - Special dies must be used
 - Higher scatter in test data requires engineering judgment on behavior
- Thermally unstable materials
 - Requires very careful attention to residence times
 - PVC

Thermal Testing

•Specific Heat

- DSC (Differential Scanning Calorimeter)
- Small samples sizes (7-15 mg)
- Differential heat required to raise the temperature of the sample as compared to a reference
- Performed in cooling to replicate molten material cooling to solidification
- Used in the simulation to determine how much energy must be dissipated to promote solidification

•Transition Analysis

- Semi-Crystalline materials show a peak in the specific heat curve
 - The peak is due to the addition heat needed to initiate crystallization
 - Due to thermal lag, transition temperatures measured in cooling mode will be lower than those measured in heating
 - The onset of the transition is set as the melting point to ensure complete melt of the polymer
 - The point at which the peak ends is set as the eject temperature
 - Beyond the eject temperature, no flow can take place
- Amorphous materials show a "knee" in the specific heat curve
 - The knee is the glass transition of the material, no crystallization takes place
 - The onset of the transition is set as the melting point to ensure complete melt of the polymer
 - In this case the inflection point of the knee is taken as the eject temperature
 - Beyond the eject temperature, no flow can take place

• Amorphous

Thermal Testing

 Measure time to dissipate the heat pulse away from probe

•Thermal Conductivity

- A measure of how well a material transfers heat
 - Measured using transient line source
 - Measured in melt and solid state
 - Different behaviors for semi-crystalline and amorphous
 - Semi-crystalline materials show an increase in thermal conductivity in solid state
 - Amorphous materials show a decrease in thermal conductivity in solid state
 - The addition of fillers increase thermal conductivity
 - Thermal conductivity of polymers is much lower than metals
 - Copper: 400 W/mK
 - ABS: 0.176 W/mK

- Isobaric cooling (for semi-crystalline materials)
 - Need to accurately capture the onset of crystallization
 - Much longer run times
- Isothermal heating scan (for amorphous materials)
 - No crystallization so transition is independent of mode
 - Much faster (relatively)
- Pressures of 10 200 Mpa
- Measure both solid and melt domains
- Difficult and time-consuming test
 - Initial density at ambient conditions
 - Mercury used as confining fluid
 - High temperatures and pressures
 - Complex datasets
 - True hydrostatic state

- Semi-Crystalline material
 - Transition region is critical
 - Rise in temp. = rise in spec. vol.
 - Rise in press. = drop in spec. vol.

- Amorphous material
- Transition is not dependent on mode

Two-

- Two domain Tait model
 - b1m is the specific volume at b5
 - b2m is the slope of the melt region

1.20

1.18

1.16

1.14

1.06

1.04 1.02 1.00 0.98 0.96 0.94 0.92 0.90

0

Temperature (°C)

(ມີຄູ່ 1.14 (ມີຄູ່ 1.12 (ມີຄູ່)ເຊັ່ງນີ້ 1.10 1.08

Specific Volume

- b3m is the pressure sensitivity or spread of the melt fit
- b4m is the pressure sensitivity of the melt state slope
- b1s through b4s are the same but for the solid state

• Two domain Tait model (transition region) • 13 parameters • Three groups of parameters b5 is the transition of the low pressure. • b6 is the slope of the transition • b7, b8, and b9 describe the shape of the crystalline transition 1.20 1.18 10 MPa 1.16 75 MPa 140 MPa (cm^3/gm) 1.12 200 MPa 1.10 1.08 Volume 1.06 1.04 1.02 e 1.00 0.98 0.96 10 MPa 0.94 75 MPa 0.92 140 MPa 0.90 b2m 200 MPa 0 50 100 150 200 250 300 Temperature (°C) b1m bBm_ 50 150 200 250 300 100

Domain Tait PVT Model:				
b5	4.202E+02 K			
6	2.000E-07 K/Pa			
1m	1.081E-03 m ³ /kg			
2m	7.707E-07 m ³ /kg•K			
3m	6.864E+07 Pa			
4m	3.209E-03 1/K			
1s	1.011E-03 m ³ /kg			
2s	4.442E-07 m ³ /kg•K			
3s	1.397E+08 Pa			
4s	1.752E-03 1/K			
b7	7.064E-05 m ³ /kg			
80	8.027E-02 1/K			
b9	4.311E-08 1/Pa			

Problematic Materials

- Thermally unstable materials
- Materials that have voids
- Very high melting point materials
 - Limitation of machine is 400°C
 - Mercury boils at 356°C under atmospheric conditions (test at minimum of 10 MPa)
 - PEI, PAEK

Thermal Expansion

- •TMA (Thermo-Mechanical Analyzer)
 - 10 x 10 mm x thickness plaques
 - Low expansion quartz probe and station
 - Constant heating rate
 - Slope of δL over temperature
- Orientation
 - One direction for no fiber
 - Two directions for fiber filled
- Data presented as calculated slopes that are constant over the test range
- Plot of probe position vs. temperature ensures linear relationship
- Anisotropic materials
- Measurements across the flow always higher
- Fibers have less thermal expansion than polymer

CLTE			
flow direction (a.1)			
	0° to 60°C		
replicate 1	6 x 10-6 / °C		
replicate 2	6 x 10-6 / °C		
replicate 3	6 x 10-6 / °C		
average	6 x 10-6 / °C		
orooo flow	direction (-2)		
CIUSS-IIUW	direction (a.2)		
	0° to 60°C		
replicate 1	34 x 10-6 / °C		
replicate 2	33 x 10-6 / °C		
replicate 3	31 x 10-6 / °C		
average	33 x 10-6 / °C		

Problematic Materials

- Continuous fiber materials
 - Test probe sits directly on the fibers that have similar CLTE to probe
- Residual stress after molding
 - Require additional annealing operation to alleviate stresses
- Very soft materials
 - Probe penetrates sample
- Films
 - Special test methods are required
 - Tend to show shrinkage due to processing method

Mechanical Testing

- Only valid for unfilled materials
- Performed at constant strain rate
 - Converted to relaxation times
 - Multi-temperature allows for temperature dependent relaxation

Tensile tests performed on a UTM

• Temperature chamber

• Poisson's ratio ($\epsilon 2/\epsilon 1$)

• Viscoelastic properties

• Modulus (σ/ϵ)

Е ⁄‱‱

• Axial and transverse strains

• Stress strain curves at multiple temperatures

Implementation into SIGMASOFT

- X-Y pairs in text files
- Viscosity (3)
- Specific heat (1)
- Thermal conductivity (1)
- PVT (4-6)
- •CTE (1)
- Mechanicals (5)
- At least 17 input files

25.1 34.2 44.3 54 63.9 73.7 207	visco310.txt <u>E</u> dit F <u>o</u> rma <u>151.9</u> tenc75 tvt	at <u>V</u> iew <u>H</u> elp	x
83.5 535 93.3 110 103.1 234 112.7 620 122.4 124 132.2 141.8 151.5 161.1 170.8 0.78 190.2 0.78 199.8 0.78 209.4 0.79 219 0.79 238.4 0.79 248 0.80 257.7 0.80 267.4 0.80 277.1 0.80 286.7 0.81	File Edit 8.909 0 0.099 0 0.206 File 0.304 287 0.400 277 0.503 267 0.602 257 0.696 247 0.795 237 0.891 227 0.990 217 1.085 107 1.185 197 1.287 187 1.381 177 1.478 167 1.577 157 1.684 146	1864 1876 1876 1876 1860 1845 1776 1758 1776 1758 1657 1652 1647 1633 1619 1606 1589 1576 1559 1550 1535	

Thermoset/Rubber

- Viscosity
- Curing Viscosity
- Specific Heat
- Thermal Conductivity
- PVT

Rheology

Applus^① DatapointLabs

• As shear rate increases, viscosity decreases

• As temperature increases, viscosity decreases

• Capillary viscosity for rubber

below cure temperature

dies)

• Parallel plate rheometer for liquids

• Material is extruded through a restriction of known geometry (extremely high tolerance

• Lower plate oscillates while top records torque

• Must be done on non-curable material or well

- Capture viscosity vs. temperature and timeIsothermal time sweeps
 - •3 temperatures
 - •Continue until plateau
- •Calculate % cure relative to initial viscosity
- •May have to eliminate initial negative slope
 - •Can't have negative cure

Modeling

- •Viscosity Modeling
 - Very strong rheological models
 - Cross WLF, Cross Arrhenius
 - Combines a model of shear rate dependency with temperature dependency
 - Allows us to predict beyond testing range

n	0.28400
τ*	32096.1
D1	3.86E+13
D2	263.15
A1	30.87
A2	51.6

- •Evaluating Cross WLF Parameters
 - The parameters are tied to real physical behavior
 - N measures shear thinning behavior
 - $\ensuremath{\bullet}$ inverse of the power-law index
 - rules for N
 - 0 < N < 1
 - small N = shear sensitive
 - + $\boldsymbol{\tau^*}$ is the critical transition stress for shear-thinning behavior
 - \bullet if τ^* is large, wide Newtonian region
 - \bullet if τ^* is small, narrow Newtonian region
 - + τ^* is small for simple linear polymers
 - eg HDPE, LDPE, PP
 - + τ^* is large for polymers with large side chains
 - eg. PC

Problematic Materials

- Materials that are not liquid
 - Require high pressures
 - Reaction starts while melting
 - BMC (bulk molding compounds)
- Highly filled materials
 - Very long fibers are too long for fixtures
 - Cannot get a homogeneous sample
 - SMC
- Very fast reaction materials
 - cyanoacrylates
- UV cure materials
 - PU
- Reaction injection molding
- Foaming materials

Thermal Testing

•Specific Heat

- DSC (Differential Scanning Calorimeter)
- Small samples sizes (7-15 mg)
- Performed in cooling to eliminate the curing enthalpy peak
- Enthalpy of reaction is recorded in the heating phase to but is not included in the specific heat curve.
- Some materials do not show an enthalpy peak or the peak is very small.
- The reaction peak is used to set the upper temperature for the PVT test
- Problems can arise if the material is strongly exothermic

Thermal Testing

 Measure time to dissipate the heat pulse away from probe

•Thermal Conductivity

- A measure of how well a material transfers heat
 - Measured using transient line source
 - Unlike thermoplastics, the test is run from room temperature up to cure temperature
 - The barrel must be coated with silicone to prevent adhesion
 - Since the test relies on heat diffusion, exothermic material pose a problem

- Isobaric heating
 - Start with an uncured sample
 - Heat to just below cure temperature
 - Hold for up to two hours
 - Ensure full reaction has taken place
 - Cool back to start temperature
- The initial heat is the volumetric expansion due to heat and reaction
- The cooling is the volumetric expansion due to only thermal effect
- Cannot be done on materials the have a large amount of outgassing
- Cannot be done on materials that begin to react as soon as they are mixed (setup time is very long)
- Can be done at multiple pressures but often not needed

expert material testing

www.datapointlabs.com www.appluslaboratories.com

LABORATORIES DIVISION