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DatapointLabs  
expert material testing 

Material Modeling  

Calibration Services 

 

Since 1995 

ISO 

 17025  
Certified 



Expertise 

Since 1995 

Focus on product development / CAE 

25 CAE codes supported 

ANSYS, LS-Dyna in-house 

 >1,000 materials tested per year 

Wide variety of materials 

Over 200 types of physical properties 

–Plastic 

–Rubber 

–Film 

–Metal 

–Foam 

–Composite 

–Cement 

–Ceramic 

–Paper 

–Wire 

–Fiber 



Market Base 

> 600 client companies 

Every manufacturing vertical 

Product development / R&D 

90% US customer base 

Expanding to Europe/Asia 

Seeking VARs / Resellers 

–Aerospace 

–Automotive 

–Appliance 

–Biomedical 

–Consumer products 

–Electronics 

–Materials 

–Pharmaceutical 

–Packaging 
 



no gamble 

TestPaks® for CAE 

Simple to order 

Global availability 

Testing to CAE requirements 

Data in CAE-ready format 

Available via Matereality 

120 material models supported  



Objective 

Many LS-DYNA models used for 

plastics crash simulation 

Common models are not designed 

for plastics 

Develop best practices for 

adapting common LS-DYNA 

models to plastics 



Plastics Behavior - Basics 

Non-linear elasticity 

Elastic limit well below 

classical yield point 

Significant plastic 

strains prior to yield 

Post-yield with necking 

behavior 
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Plastics Rate Effects 

Modulus may or may not depend on rate 



Effect of fiber fillers 

Higher modulus 

Small strain to failure 

Brittle failure 

No post-yield behavior 

Anisotropy 



Material Testing 

Instron servo-hydraulic 

Dynamic load cell 

Tensile strain rate to 100/s 

Tensile, compressive or flex 



MAT 24 – Ductile plastics 

Modulus is not rate dependent 

Large strains to failure 

Post-yield necking 

Plasticity curves vary with strain rate 

Failure strain independent of strain rate 



MAT 24 – Choosing EMOD 
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MAT 24 – Plasticity 

Discretize curve 

Calculate EPS for each ES 

EPSmax > FAIL 
 (FAIL = element deletion strain) 



Post-yield with necking 
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MAT 24 – Fail Limitations 

When FAIL f(strain rate) 
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MAT 24 – Rate Dependency 

Cowper Symonds 

Does not correlate 

well with plastics rate 

dependency 

LCSR 

Capture model 

independent behavior 



MAT 24 – LCSR-Eyring 

Eyring Model 

Yield stress v. log strain rate is linear 

Best form for plastics 

Fit yield stress v. log strain rate 

data to Eyring equation 

Submit as table using LCSR  



MAT 19 – Brittle plastics 

Modulus is rate dependent 

Small strains to failure 

Brittle failure 

Failure strain decreases with 

increasing strain rate 



MAT 19 – Methodology 

Determine elastic limit at 

quasi-static strain rate 

Use elastic limit for von-

Mises yield 

Define failure 

 failure stress v. strain rate 

table 



Finding the elastic limit 

Cyclic loading curves 
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MAT 89 – Ductile-brittle 

Non-linear behavior  

Failure depends on 

strain rate 

Can handle ductile-

brittle transitions 

Uses stress-strain 

curve 



MAT 89 – Methodology 

Submit stress-strain 

curve 

Submit EMOD 

Submit rate 

dependency via 

LCSR-Eyring 

Submit failure strain v. 

strain rate via LCFAIL 



MAT 89 – Workings 

Internally decompose quasi stress-

strain curve 

Use EMOD for von Mises limit 

Rest of the curve is elastic-plastic 

Rate dependency via LCSR 

Failure via LCFAIL 



Conclusions 

Choice of material model depends on 

Material 

Test data 

Proper selection = reasonable model 

Simple improvements can add power 



Questions? go to testpaks.com 

CAE centric materials web-site  

Focus on material modeling 

Testing for CAE  

Supported by 

DatapointLabs 

CAE vendors 

Expert users 


