
Validation of Simulation

expert material testing | CAE material parameters | CAE Validation | software & infrastructure for materials | materials knowledge | electronic lab notebooks

Outline

- Why validate
- Validation how it works
- Using validation through the simulation cycle
- Best practice

What is Verification?

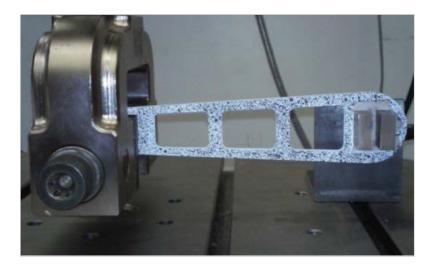
- Simulations use mathematical models to replicate physical reality
- Verification is confirmation of mathematical model
- Unit element test checks that finite element behaves realistically

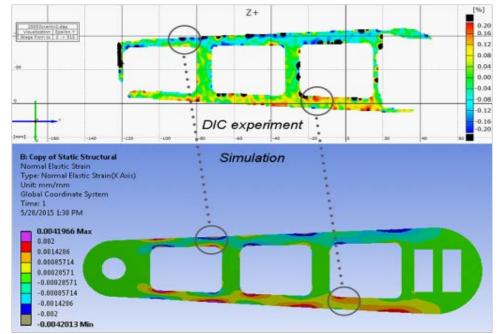
What is Validation?

- Confirmation of everything else
 - Choice of element type
 - Mesh size effect
 - Simulation settings
 - Material data & model
 - Material parameter conversion

Requirement for high-fidelity simulation

- Correctly represent the real-life scenario
- Application of hi-fi simulation
 - Late-stage prototyping
 - Additive manufacturing
 - Digital twinning



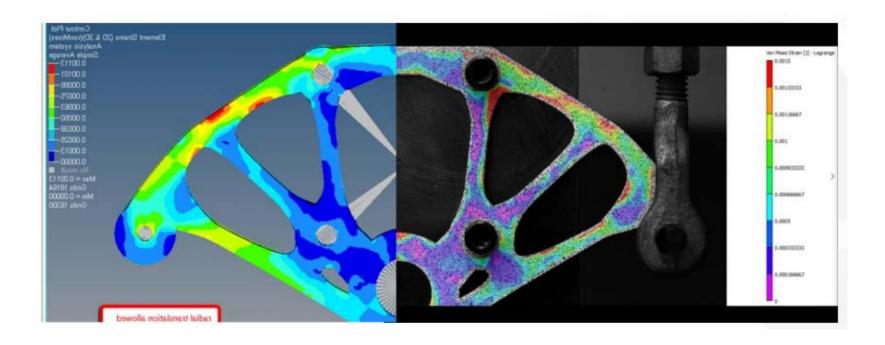

When to validate?

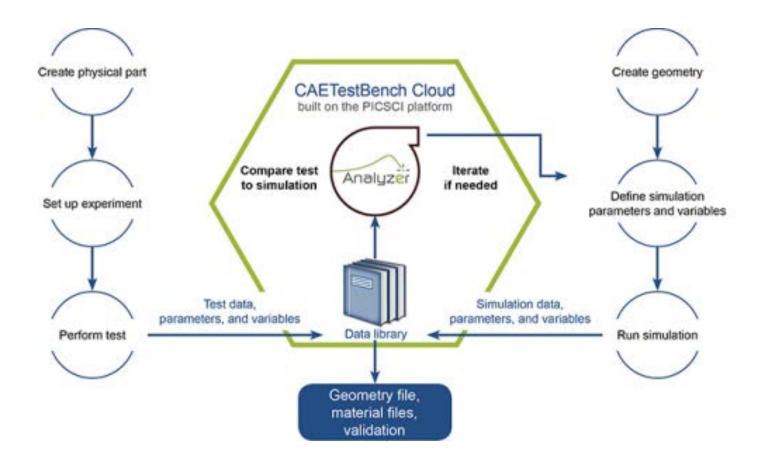
- Before starting work on real product
- Whenever you change/modify a simulation parameter
 - Finite element
 - Mesh size
 - Material model

Step 1 – Validate your simulation



Step 2 – Start making parts


- Take original design
- Load case
- Perform topology optimization
- Print


Printed part performs as simulated!

The initial validation process

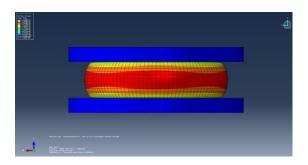
How it works

- Set up experiments and simulations in PICSCI
- Perform test > drop data into PICSCI
- Stage simulation
 - Record simulation parameters and variables in PICSCI
 - Perform simulation > drop data into PICSCI
- Use Analyzer module to measure simulation accuracy
- Iterate as needed to explore best material models and parameters
- Deliver to client
 - Validation Report
 - Simulation file
 - CAE Material file(s)

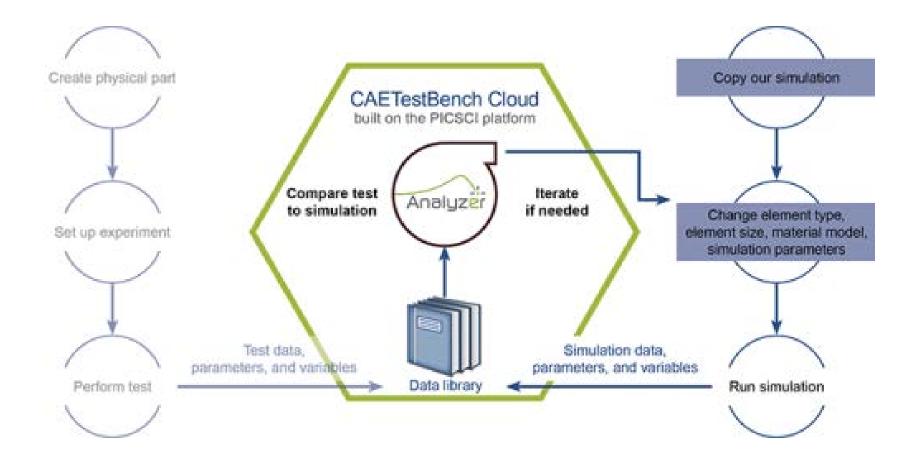
Stored simulation and physical test data

÷ → C 🔒 Secure htt	tps://caetestbench.picsci.com	n/MyDatabase#E	diting				☆		9 (
CAETestBench							Home S	ettings Lo	ogout
								Megan Lo	_
	My Database > Experim		had		Downarada		Coloction		
Share	Published	Unpublis	ned	In Review	V Downgrade	u y	Selection		
Comp are	Display 10 🔻		First Previous	123N	lext Last	1 to 10	of 25		
Transfer	Actions	A Test Date	Project ID	Sample ID	🔶 Sample Name 🔶	Subject 🔶	Experiment 🔶	Access	
Control Access	⊻ ∞ ∕ 😤 < ≠ 🔒	2016-8-30	35195	28289		40A Silicone	Uniaxial Compression Test	1 *	
	⊻⊚∕≋≺≠≞	2016-9-13	35195	28289b	nonlinear adaptive mesh	40A Silicone	ANSYS Hyperelastic Uniaxial Compression	1 *	
	□ ◎/ ╡< ≠ &	2016-9-13	35195	28289a		40A Silicone	ANSYS Hyperelastic Uniaxial Compression	1*	
databases ↓ search ★ tools	▯៙◢▯ਖ਼ਖ਼ਫ਼	2015-1-26	30753	25021b	Poisson's True Stress	ABS PN 8586K161	Tensile Test	1 *	
	□∞∕≋<≠≞	2017-9-1	30753	25021c	initial velocity	ABS PN 8586K161	LS-DYNA MAT_024 Tensile Test	1*	
	□ @/ X < Z 🔒	2017-9-26	30753	25021a	Classic SS Calculation	ABS PN 8586K161	Tensile Test	1 *	
	▯៙╱╡<≠量	2017-9-3	30753	25021d	prescribed motion	ABS PN 8586K161	LS-DYNA MAT_024 Tensile Test	1*	
	○ ◎/ ⋛ < ≓ 	2017-9-5	30753	25021e	lcss vp vary	ABS PN 8586K161	LS-DYNA MAT_024 Tensile Test	1*	
	□∞∕≋<≠品	2017-9-5	30753	25021f	cp vp vary	ABS PN 8586K161	LS-DYNA MAT 024 Tensile	1 *	

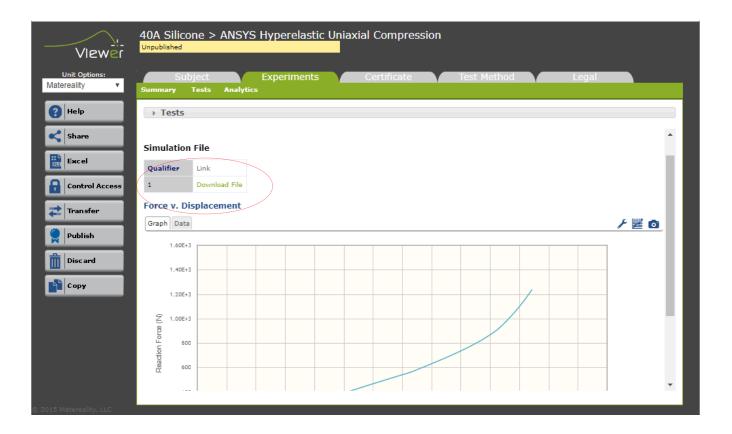
Iterations of simulations


Viewer	40A Silicone > ANSYS Hyperelastic Uniaxial Compression										
Unit Options: Matereality	Subject Summary Tes		Experiments	Certificate Test I	Method	Legal					
? Help	▼ Tests										
K Share	R	Replicates	Results	Variables							
Excel	View 1	L	Force v. Displacement Simulation File	boundary conditions: M-R Matereality material model: Slipping							
Control Access	View 1	L	Force v. Displacement Simulation File	boundary conditions: M-R Matereality material model: Mixed							
Transfer	View 1	L	Force v. Displacement Simulation File	boundary conditions: M-R Matereality material model: Fixed							
Publish	View 1	L	Force v. Displacement	boundary conditions: M-R ANSYS material model: Mixed							
Disc ard	View 1	L	Force v. Displacement	boundary conditions: Ogden material model: Mixed							
Сору	→ Analytics										
© 2015 Matereality, LLC											

Curve Analytics - Automated Viewer Analytics

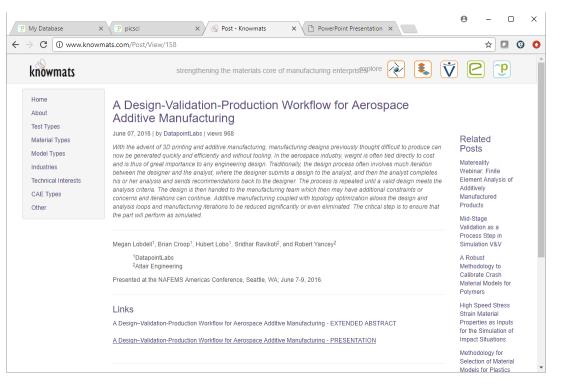


Continuing Validation


How to do it

- If you change your simulation parameters, element configuration, or material model, you can re-validate to assess the impact on your simulation
- Go to CAETestBench.PICSCI
- Make a copy of the simulation
- Download our simulation file and material card
- Modify inputs as needed
- Run simulation
- Upload new simulation data, parameters and variables
- Use Analyzer module to compare simulation to experiment
- Iterate as needed to explore best material models and parameters

Downloading the simulation file



Thank you

- Read about Materials in Simulation at our free site
 <u>www.knowmats.com</u>
- Links to technical papers
- Contributions from industry experts

