THE ROLE OF MATERIAL DATA IN THE SIMULATION OF INJECTION MOLDED PARTS

Hubert Lobo and Brian Croop
Presented by: Douglas McMullen

DatapointLabs Technical Center for Materials, USA
About Us

DatapointLabs
technical center for materials

TestPaks
testing for simulation

matereality
software for materials

picsci
electronic lab notebooks

knowmats
materials in simulation
Nature of the Problem

• Material
 • Non-linear, dependent on time, rate, temperature, moisture

• Process Simulation
 • Transient non-linear, non-isothermal compressible flow simulation
 • Non-isothermal visco-elastic effects
 • Cooling rate & shear-dependent crystallization (semi-crystalline polymers)
 • Fiber orientation (fiber-filled plastics)

• Performance Simulation (Structural Analysis)
 • Non-linear elasticity
 • Deviatoric and volumetric plastic strain
 • Properties change over product operational temperature & environmental exposure
 • Rate-dependent behavior (impact, creep/stress relaxation)
General Solution Outline

• Correctly understand your materials and application
• Properties needed are solver dependent
• Obtain correct representative data for your materials
 • Material supplier
 • From a qualified database
 • Test lab (internal or external)
• Make a good material model
• Check for simulation accuracy (Validation)
• Store data for consistent use
 • All users
 • All solvers
What is Representative Data

- Actual material used in your product
- Represents real-life situation
 - Temperature
 - Rate-dependent
 - Product environment
 - Processing method

strengthening the materials core of manufacturing enterprises
Required Testing for Injection-molding Analysis

- Mold Filling
- Packing
 - Post-Mold Shrinkage
 - Warpage
Measurement of Viscosity

- Capillary rheometer is used
- Material is extruded through a restriction of known geometry (extremely high precision dies)
- Temperature and flow rate are controlled
- Pressure drop across the restriction is used to determine viscosity as a function of shear rate and temperature
Problematic Materials

- Moisture sensitive materials
 - Improperly dried materials cause reduction in viscosity
 - Over-dried materials cause a rise in viscosity
 - PET, PA, PC, PBT etc.
- Highly fiber-filled materials
 - Need to account for fiber breakage during processing
 - Perform rheology with molded parts to get process history
- Thermally unstable materials,
 - 3-4 min. residence time (eg. PAI) too short for capillary rheometer
 - Requires very careful attention to residence times
 - Consider using injection-molding rheometer
Moisture Study of PA 6/6
Wet/Dry Viscosity Comparison

Coefficients (SI units) Dry

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0.47213</td>
</tr>
<tr>
<td>τ^*</td>
<td>28006.21</td>
</tr>
<tr>
<td>D_1</td>
<td>5.43E+11</td>
</tr>
<tr>
<td>D_2</td>
<td>413.15</td>
</tr>
<tr>
<td>A_1</td>
<td>26.65</td>
</tr>
<tr>
<td>A_2</td>
<td>51.6</td>
</tr>
</tbody>
</table>

Coefficients (SI units) Wet

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0.21509</td>
</tr>
<tr>
<td>τ^*</td>
<td>60816.386</td>
</tr>
<tr>
<td>D_1</td>
<td>1.34E+20</td>
</tr>
<tr>
<td>D_2</td>
<td>378.07371</td>
</tr>
<tr>
<td>A_1</td>
<td>53.68</td>
</tr>
<tr>
<td>A_2</td>
<td>51.6</td>
</tr>
</tbody>
</table>
Mold Filling Pressure
Pressure Profile Near Gate and Away

- Dramatic difference in pressure in mold
- Almost 5 times pressure for only 0.25 % moisture
Required Testing for Structural analysis
Measuring Stress-strain

- Universal Testing M/c
- Extensometry for strain
- Stress-strain data
 - Modulus, Poisson’s ratio
 - Stress v. plastic strain
Material Model

- Tensile and Density Tests
- Elastic
 - $E = 1572$ [MPa]
 - $\nu = 0.29$
- Plastic curve (Right)
- Density
 - $\rho = 7.9 \times 10^{-6}$ [tonne/mm3]
- Measured at QS speeds
Using Validation to Check Simulation Quality

- Instron 8872 universal testing machine (UTM)
- 1 mm/min displacement of nose
- Apply speckle pattern to part to allow use of DIC strain capture
- Two camera DIC to capture 3D strain
Side by Side Comparison of Strains

• Matched the strains in the legend for the DIC image for easy comparison
• The lower strains match closely but the shape of the higher strains on the experiment end up more triangular than the simulation
Comparison Simulation to Experiment

- Strain vs. Displacement
 - Diverges after 2 mm
 - Onset of yield
 - Volumetric strain not accounted for

- Force vs. Displacement
 - Similar response throughout
Fiber-filled Plastics

• Spatial orientation of fibers
 • Properties vary spatially
• Can be approximated
 • Worst case- use cross-flow data
• Fiber-orientation material modeling
 • Perform injection-molding simulation
 • Obtain fiber orientations
 • Calculate local orientation-based properties
 • Send to FEA

Source: e-Xstream
Typical Test Protocol

- Mold long plaques
 - Edge gated: short-end
 - Fully developed flow
 - High fiber orientation
- Cut test specimens
 - 0°, 90°, 45°, ...
- Obtain true stress-strain data
- Calibrate material model
Example- Airbag Housing

Source: e-Xstream
Impact on Failure

With Fiber Orientation

Source: e-Xstream

Isotropic
In closing

- Plastics simulations are affected by
 - Material data
 - Choice of material model
 - Parameter conversion
- Models are not perfect
 - Validation is a useful confidence-building step
- High fidelity simulation is possible with representative material data
Reference

• NAFEMS book
• Determination and Use of Material Properties for Finite Element Analysis
 • By Hubert Lobo and Brian Croop. NAFEMS, 2016. 90 pp.
 • Available from NAFEMS.org

• Advanced topics at http://knowmats.com/