THE ROLE OF MATERIAL DATA IN THE SIMULATION OF INJECTION MOLDED PARTS

About Us

Nature of the Problem

- Material
 - Non-linear, dependent on time, rate, temperature, moisture
- Process Simulation
 - Transient non-linear, non-isothermal compressible flow simulation
 - Non-isothermal visco-elastic effects
 - Cooling rate & shear-dependent crystallization (semi-crystalline polymers)
 - Fiber orientation (fiber-filled plastics)
- Performance Simulation (Structural Analysis)
 - Non-linear elasticity
 - Deviatoric and volumetric plastic strain
 - Properties change over product operational temperature & environmental exposure
 - Rate-dependent behavior (impact, creep/stress relaxation)

General Solution Outline

- Correctly understand your materials and application
- Properties needed are solver dependent
- Obtain correct representative data for your materials
 - Material supplier
 - From a qualified database
 - Test lab (internal or external)
- Make a good material model
- Check for simulation accuracy (Validation)
- Store data for consistent use
 - All users
 - All solvers

What is Representative Data

- Actual material used in your product
- Represents real-life situation
 - Temperature
 - Rate-dependent
 - Product environment
 - Processing method

Required Testing for Injection-molding Analysis

Measurement of Viscosity

- Capillary rheometer is used
- Material is extruded through a restriction of known geometry (extremely high precision dies)
- Temperature and flow rate are controlled
- Pressure drop across the restriction is used to determine viscosity as a function of shear rate and temperature

Problematic Materials

- Moisture sensitive materials
 - Improperly dried materials cause reduction in viscosity
 - Over-dried materials cause a rise in viscosity
 - PET, PA, PC, PBT etc.
- Highly fiber-filled materials
 - Need to account for fiber breakage during processing
 - Perform rheology with molded parts to get process history
- Thermally unstable materials,
 - 3-4 min. residence time (eg. PAI) too short for capillary rheometer
 - Requires very careful attention to residence times
 - Consider using injection-molding rheometer

Moisture Study of PA 6/6

Wet/Dry Viscosity Comparison

Coefficients (SI units) Dry

n	0.47213
τ*	28006.21
D1	5.43E+11
D2	413.15
A 1	26.65
A2	51.6

Coefficients (SI units) Wet

n	0.21509
τ*	60816.386
D1	1.34E+20
D2	378.07371
A 1	53.68
A2	51.6

Mold Filling Pressure

Pressure Profile Near Gate and Away

- Dramatic difference in pressure in mold
- Almost 5 times pressure for only 0.25 % moisture

Required Testing for Structural analysis

Measuring Stress-strain

- Universal Testing M/c
- Extensometry for strain
- Stress-strain data
 - Modulus, Poisson's ratio
 - Stress v. plastic strain

Material Model

- Tensile and Density Tests
- Elastic
 - E = 1572 [MPa]
 - u = 0.29
- Plastic curve (Right)
- Density
 - $\rho = 7.9 \text{ E-06 [tonne/mm}^3]$
- Measured at QS speeds

Using Validation to Check Simulation Quality

- Instron 8872 universal testing machine (UTM)
- 1 mm/min displacement of nose
- Apply speckle pattern to part to allow use of DIC strain capture
- Two camera DIC to capture 3D strain

Side by Side Comparison of Strains

- Matched the strains in the legend for the DIC image for easy comparison
- The lower strains match closely but the shape of the higher strains on the experiment end up more triangular than the simulation

Comparison Simulation to Experiment

- Strain vs. Displacement
 - Diverges after 2 mm
 - Onset of yield
 - Volumetric strain not accounted for

- Force vs. Displacement
 - Similar response throughout

Fiber-filled Plastics

- Spatial orientation of fibers
 - Properties vary spatially
- Can be approximated
 - Worst case- use cross-flow data
- Fiber-orientation material modeling
 - Perform injection-molding simulation
 - Obtain fiber orientations
 - Calculate local orientation-based properties
 - Send to FEA

Source:e-Xstream

Typical Test Protocol

- Mold long plaques
 - Edge gated: short-end
 - Fully developed flow
 - High fiber orientation
- Cut test specimens
 - 0°, 90°, 45°, ...
- Obtain true stress-strain data
- Calibrate material model

Example- Airbag Housing

Source:e-Xstream

Impact on Failure

Source:e-Xstream

In closing

- Plastics simulations are affected by
 - Material data
 - Choice of material model
 - Parameter conversion
- Models are not perfect
 - Validation is a useful confidence-building step
- High fidelity simulation is possible with representative material data

Reference

- NAFEMS book
- Determination and Use of Material Properties for Finite Element Analysis
 - By Hubert Lobo and Brian Croop. NAFEMS, 2016. 90 pp.
 - Available from NAFEMS.org
- Advanced topics at http://knowmats.com/

