Progress on the Validation of Simulation for Ductile Polymers and

An Introduction to Knowmats Knowledge Resource for Materials in Simulation

Mission

DatapointLabs

We strengthen the materials core of manufacturing enterprises to facilitate their use of new materials, novel manufacturing processes, and simulation-based product development.

Brands

Tensile stress-strain behavior- some thoughts

- Non-linear elasticity Lobo& Hurtado (2006)
- Plasticity occurs prior to yield Lobo& Hurtado (2006)
- No increase in volume strain prior to yield Lobo, Croop, &Roy (2013)
- Volumetric straining occurs at yield Lobo, Croop, &Roy (2013)
- Yield surface is not von Mises
- Volumetric and deviatoric behavior in flow region
- Failure is accompanied by rapid volumetric expansion

Obtaining true stress-strain

• Effect of gage length selection

strengthening the materials core of manufacturing enterprises

y Î

Ζ

> X

3D Stress-strain measurements for plastics

True stress v. volumetric strain and true strain

- True stress calculated from x-z strain
- Y-strain is localized, true
- Volumetric strain obtained from YXZ strains
- Fail strain is measured

PP

DatapointLabs

PC

Transverse v. axial strain

- X and z strains may not coincide
- May depend on material and processing

PC

PP

Yield and failure in plastics - PC

- Yield surface Available test modes
 - Tensile
 - Compressive (CLC)
 - Shear (classical or Iosipescu)
 - Biaxial

Material parameter conversion

- Need accurate consistent data on your material
- All required properties must be measured
- Material parameter generation must be correct
- Validation can be beneficial

TestPaks

your design

Obtaining material parameters for CAE

testing | material parameters | CAE material file | validation

Your data, material cards and test reports are deposited directly into your Matereality database

Software for material parameter conversion

Fitting equations and evaluating quality of fit

Plastics Validation by CAETestBench

strengthening the materials core of manufacturing enterprises

3100

00'5 00'5

Material Model: Polypropylene

- Tensile and Density Test
- Elastic
 - E = 1572 [MPa]
 - u = 0.29
- Plastic curve (Right)
- Density
 - $\rho = 7.9 \text{ E-06 [tonne/mm^3]}$
- Measured at QS speeds

DIC Operation

- Speckle pattern is broken into facets (elements)
- Speckle pattern is tracked frame to frame
- Calibration of a volume is performed through measuring calibration panel in various orientations in the test space.
- Strains can be captured on the microstrain level
- Strain filed can be mapped over the actual part image

Experimental Setup

- Instron 8872 universal testing machine (UTM)
- 1 mm/min displacement of nose
- Apply speckle patter to part to allow use of DIC strain capture
- Two camera DIC to capture 3D strain

Deformed Part

Loaded past yieldObserved symmetric buckling inwards

•Slight indentation of support pins causing stress whitening on the reverse side of the part

Matching Simulation to Reality

Comparison of Simulation to Experiment

strengthening the materials core of manufacturing enterprises

LS-DYNA Validation of Dart Impact - PP

• MAT_024 material model fitted with Matereality

Falling dart validation for PP

- MAT_024 Material Model
 - Various rate dependency options
- VP=1
- Fail Strain extrapolated to 1.2

LS-DYNA validation using MAT_089 (LCSS)

- Where modulus is rate-dependent
 - Effect of highest and lowest elastic modulus values.

When the elastic modulus was changed to the modulus corresponding to the slowest strain rate, a stiffer initial response was observed

Dynamic Validation of Dart Impact - ABS

• ABAQUS-Explicit

TestPaks

/)/

Use Knowmats[™] to learn more about materials in simulation

Knowledge accumulated by DatapointLabs, partners, industry experts

Contributors invited!

20 years of DatapointLabs

- Focused on "materials in simulation" since 1995
- Deep domain expertise
 - physics of materials, CAE parameter conversion, software for materials
- Market dominant and world renowned

