

Materials Data Workflow for Simulation of Composites in Transportation Applications

Hubert Lobo, President, DatapointLabs

Composites in Transportation

- Traditional transportation markets
 - Aerospace: low volume, highly reliability product
 - Automotive: emerging but mass production is difficult

- New transportation markets (flying cars, self driving vehicles)

- Requires both mass production and high reliability *
- New Challenges
 - Light-weighting (composite / AM lattice designs) *
 - Design optimization (novel simulation-driven components) *
 - Electrification
 - 5G-cybersecurity

* Topics relevant to this presentation

Outline

- 1 Models for composite simulation
- 2 Typical tests needed
- 3 Material model calibration
- 4 Validation of simulation against physical test
- 5 Documentation and traceability
- 6 Incorporating design allowables
- 7 Storage and deployment to simulation

Nature of Composites

High strength lightweight applications

- Behavior is unlike metals and plastics
- Orthotropic properties can be exploited for maximum benefit
- Need a deep understanding of behavior for successful implementations
- Cost is much higher

Composites are multi-scale materials

Resin + fiber = sheet Sheets in different orientations = layup

Images courtesy: J. Wollschlager, Altair

Testing of composites

Tensile properties Compressive properties Shear properties

Properties are non-linear in certain orientations and modes of deformation.

Composite properties are orthotropic

X

Vary with orientation Vary with test mode

Properties are non-linear in certain orientations.

Composite properties vary with layup

Sheets in different orientations = layup

LABORATORIES DIVISION

Test matrix for simulation

Test certain layups in specific orientations Approaches exist for

- DIGIMAT
- Altair Multiscale Designer
- NASTRAN

Example of test matrix for Altair Multiscale Designer material model

Test	Test Standard	Layup	Specimens per Panel	Total Panels	Total Specimens
0 Tension	ASTM D3039	[0] ₈	3	2	6
90 Tension	ASTM D3039	[90] ₁₆	3	2	6
[45/-45] Tension	ASTM D3518	[45/-45] _{4s}	3	2	6
0 Compression	ASTM D6641	[0] ₁₆	3	2	6
90 Compression	ASTM D6641	[90] ₁₆	3	2	6
[90/0] Tension *	ASTM D3039	[90/0] _{2s}	3	2	6
[90/0] Compression *	ASTM D6641	[90/0] _{4s}	3	2	6
[50/40/10] * OHT	ASTM D5766	[-45/02/45/90 /45/02/- 45/0]s	3	2	6
			Totals	16	48

*Used for validation

Material Model Calibration

Example calibration process for Altair Multiscale Designer

- Simulation predicts behavior of a variety of laminate lay-ups
- Stiffness and failure is modelled

Multi-scale model

Ply test and model calibration

Lobdell, Wollschlager, ATC (2018)

Validation of complex laminate test

Material Model Validation-1

Confirm that the simulation can predict different layups

PICSCI, a Matereality digitalization software is used to compare simulation to test

PicSci Electronic Lab Notebooks can store and compare results of physical tests and simulations

Simulations courtesy: J. Wollschlager, Altair

Material Model Validation-2

Confirm that the simulation can predict complex case

- Complex layup- [-45/02/45/90/45/02/-45/0]s
- Complex test Open hole tension ASTM D5766

Experimental strains by digital image correlation (DIC)

Documenting Composite Material Data

- 1 Composition (layups)
- 2 Processing (autoclaving)
- 3 Properties varying with orientation, temperature, strain rate, other parameters
- 4 Traceability

Composition

Store detailed compositional information about the layup

The Matereality Composition framework allows for the storage of any compositional information on composites.

Such composition templates can be created for any kind of materials.

🖞 Matereality - Google Chro	ome					_		×
O Not secure servert	hree/test/v12/Material/Details?id=Carbon%2F	Epoxy%20%	65B45%2F0%2	F-45%2F90%5I)			<u>S</u>
Viewer Carbon/Epoxy [45/0/-45/90] Carbon/Epoxy [45/0/-45/90] > Composition								
Edit Material	Structured Composite							
Fedit Processing	layer	layer ID	orientation	thickness (mm)				
Edit Certifications	Carbon/Epoxy UD	3	-45	0.5				
Calif Availability	Carbon/Epoxy UD	1	45	0.5				
Edit Availability	Carbon/Epoxy UD	4	90	0.5				
Edit Aliases	Carbon/Epoxy UD	2	0	0.5				
Transfer Manage Access								

Processing

Autoclaving is typically used

Matereality provides a Processing framework for the storage of process conditions for each processing step.

Any other kind of processing operation can be similarly captured to completely document the production process

Property data

Capture data for each replicate from the physical test Include variation in properties with orientation

Matereality software automatically cross plots multi-variate data for efficient data analysis

Variability bands compute statistical spread of curve data

🔁 Matereality Data Viewer -	Google Chrome						- 0	×
(i) https://my.matereali	i ty.com /Experiment	/Summary/21362	3					<u>G</u> g
Viewer	T700/2510 U	nidirectional >	• Tensile Prop	perties		<mark>- → □</mark>	tapoint Labs ★ ★ data source	
Unit Options: Matereality v	Material Summary Tests	Properties Analytics	Certific	ate Test	Method	Legal		
Help	→ Analytics							
Share	Effect of specime	n orientation						î.
	True Tensile St	ress-Strain Curv	25			0deg direction - 11-1	۵ 🗲 ۲	88
Transfer	3.50E+3					0deg direction - 11-2 0deg direction - 11-3		
Request Review	3.00E+3					Odeg direction - 11-7		
Discard Test	2.50E+3					Codeg direction - 11-9	-	
Y Pin To Board	(p 2.00E+3					Odeg direction - 11-10 Odeg direction - 11-11		
	Salts 97					10deg/80deg/10deg direction - 17-1 10deg/80deg/10deg direction - 17-2	-	
	는 1.00E+3					10deg/80deg/10deg direction - 17-3		
	0.00					10deg/80deg/10deg direction - 17-4		
	0.00					10deg/80deg/10deg direction - 17-6		•
opyright © Matereality 2002-2	2019; v12.0						Request	Help

Traceability

Capture details of the physical test

- Sample information
- Test parameters
- Test lab and technician

Matereality Data Certificates satisfy the ISO 17025 data reporting requirement.

C Matereality Data Viewer -	Google Chrome				_		
i https://my.materealit		C Z					
	T700/2510 U Material	Inidirectional > Ten Properties	sile Properties Certificate Test Metho	d Legal	<mark>∕∕∕</mark> DatapointLa ★★★★★ data s	ubs ource	
	Data Certificate		^				
	Technique	authority	ASTM			- 8	
	lechinque	test method	ASTM D3039-95			- 8	
	Sample Details	ID	29711			- 8	
	Sample Details	sample source	client			- 8	
	Specimen Details	specimen orientation	varying			- 8	
		other specimen preparation	varying			- 8	
		thickness	varying			- 8	
		form	Open Hole Tension bar			- 8	
		conditioning	40 hours, 23C, 50%RH			- 8	
		width	37.92 mm			- 8	
	Test Parameters	gage length	6.418 mm			- 8	
		test temperature	23 C			- 8	
		laboratory humidity	56 %RH			- 18	
		crosshead speed	2 mm/min				
		data source	DatapointLabs				
		date	2017-8-14			-	
Copyright © Matereality 2002-20)19; v12.0				Requ	uest Help	

Incorporating Design Allowables

Testing to CMH-17

- Additional lots and replicates
- Strong statistical basis = Greater design reliability

Matereality software has built-in tools to perform statistical analysis of stored data

Compare - Google Chrome							
https://my.matereal	https://my.matereality.com/Experiment/CompareResults						
Analyzer	Compare > Multiple Experiments						
Unit Options: Matereality	Materials Pr	operties Certificates					
Statistics Select Data	Compare: Multiple Experiments						Î
	Property	Qualifier	Value	Units			- 15
		M40J/Epoxy Unidirectional [-45/0/45/90]2s - Odeg direction Mean	0.947	%			- 15
		Carbon/Epoxy Unidirectional [0]8 5	0.86	%			- 15
		Carbon/Epoxy Unidirectional [90]16 2	0.557	%			- 15
		Carbon/Epoxy Unidirectional [+-45]4S C2	0.734	%			- 15
	Offset Yield Strain in Tension	Carbon/Epoxy Unidirectional [90/0]2S D3	1.7	%			
		Carbon/Epoxy Unidirectional (4545)(2)090(4545)2S G-Ten-6	1.17	%			
		Carbon/Epoxy Unidirectional [45/0/-45/90]2s H2	1.88	%			
		Mean	1.12	%			
		Std Deviation	0.461	%			
		M40J/Epoxy Unidirectional [-45/0/45/90]2s - Odeg direction Mean	645	MPa			
		Carbon/Epoxy Unidirectional [0]8 5	1.12E+03	MPa			
		Carbon/Epoxy Unidirectional [90]16 2	43.9	MPa			
		Carbon/Epoxy Unidirectional [+-45]4S C2	97.4	MPa			
	Offset Yield Stress in Tension	Carbon/Epoxy Unidirectional [90/0]2S D3	1.43E+03	MPa			
		Carbon/Epoxy Unidirectional (4545)(2)090(4545)2S G-Ten-6	350	MPa			
pyright © Matereality 2002-2	2019; v12.0					Reque	est Help

Storing Material Cards for Simulation

Library stores material files for any solver

- CAE material files are linked to material
- CAE material files are linked to source material data

Matereality software has built-in tools to create CAE material files from stored data, including data manipulation for non-linear material models, data fitting to equations.

Exporting Material Cards for Simulation

Stores material files can be deployed to solvers

Matereality software has direct connectivity to

- HyperWorks
- ANSA
- Abaqus/CAE
- ANSYS Workbench
- SolidWorks
- NX Nastran
- CATIA
- PTC/Creo

Summary

- 1 Composites are complex materials
- 2 Simulation can reduce the need to test each layup= reduce total number of physical tests
- 3 Validate of simulation is essential to prove accuracy
- 4 Composites generate a large amount of complex data: composition, processing, varying properties
- 5 Design allowables testing increases the quantity of data
- 6 Simulation material models must be well coupled to source data
- 7 Digitalization software is essential to support this activity

Applus DatapointLabs

www.datapointlabs.com www.appluslaboratories.com

LABORATORIES DIVISION