Material Models in Simulation-Part 3 - New viscosity models

Hubert Lobo

Evaluation Parameters

- material property based parameters
- evaluate effects seen in the process
- understand and interpret simulation results
- compare materials
- develop criteria for selection based on desired processability

Properties of Evaluation Parameters

- easily available
- measures or estimates of actual effects
- must be considered along with other relevant parameters

Plastics may bave large shear this mine recipes

nature of the 2nd order matrix

- temperatures
 - » Tmelt
 - » Tmelt+20
 - » Tmelt-20
- shear rates
 - » 100
 - » 1000
 - » 10000

Т	γ	η
Tmelt-20	1000	η1
Tmelt	100	<mark>ղ</mark> 2
Tmelt	1000	η3
Tmelt	10000	η4
Tmelt+20	100	η5
Tmelt+20	1000	η6

temperature sensitivity of viscosity

- TVH = (ln η 3 - ln η 6) / 20

Т	γ	η
Tmelt-20	1000	η1
Tmelt	100	η2
Tmelt	1000	η3
Tmelt	10000	η4
Tmelt+20	100	η5
Tmelt+20	1000	η6

rules

TV* 1E+03 Datapoint Testing Services

shear sensitivity of viscosity

- defining a limited power-law index.

» SHB= ($\ln \eta 3$ - $\ln \eta 4$) / 2.303

Т	γ	η
Tmelt-20	1000	η1
Tmelt	100	η2
Tmelt	1000	η3
Tmelt	10000	η4
Tmelt+20	100	η 5
Tmelt+20	1000	η6

- 0<SHB < 1

- large SHB = shear sensitive
- important exception:
 - » broad newtonian PC)

New models used in Moldflo

viscosity:

Cross Model

 $\eta = \frac{\eta_0}{1 + \left(\frac{\eta_0 \dot{\gamma}}{\tau^*}\right)^{(1-N)}}$ $\eta_0 = B \exp\left(\frac{T_b}{T}\right) \exp\left(\beta P\right)$ η Viscosity (*Pa*.sec) $\dot{\gamma}$ Shear Rate (sec⁻¹) T Temperature (C) *P* Pressure (Pa) Unknowns: $B, T_{\rm h}, \beta, \tau^*, N$

- B -no direct relevance
- measures η_o when taken with Tb
- "zero shear viscosity normalized for temperature"

$$\eta_0 = B \exp\left(\frac{T_b}{T}\right)$$

- Tb -measures temperature sensitivity of viscosity
- rules
 - if Tb is large, material is highly sensitive
 - semi-crystalline
 - » Tb is small and relatively constant
 - amorphous
 - » Tb is larger and increases with temperature

- τ* -critical transition stress for shear-thinning behavior
 rules
 - if τ^* is large, wide Newtonian region
 - if τ^* is small, narrow Newtonian region
 - τ* is small for simple linear polymers
 » eg HDPE, LDPE, PP
 - τ* is large for polymers with large side chains
 » eg. PC

- N measures shear thinning behavior
 - inverse of the power-law index
- rules for N
 - -0 < N < 1
 - small N = shear sensitive
 - important exception:
 - » fails if shear thinning region is not defined

Assessment of the Cross Model

- easy model
 - terms have direct physical relevance
 - easy to assess and evaluate
- temperature sensitivity of viscosity is constant
 - cannot model temperature sensitivity for amorphous materials

New models used in Moldflow

viscosity:Cross-WLF

 $\eta = \frac{\eta}{1 + \left(\frac{\eta_0 \dot{\gamma}}{r^*}\right)^{(1-N)}}$ $\eta_0 = D_1 \exp \left[\frac{-A_1 (T - T^*)}{A_2 + (T - T^*)} \right]$ $T^* = D_2 + D_3 P$ η Viscosity (*Pa*.sec) $\dot{\gamma}$ Shear Rate (sec⁻¹) T Temperature (C) P Pressure (Pa) Unknowns: $D_1 D_2 D_3 A_1 A_2 \tau^* N$ **Datapoint Testing Services**

- D1 -no direct relevance
- similar to B
- measures η_o when taken with WLF equation
- "zero shear viscosity normalized for temperature"

$$\eta_0 = D_1 \exp\left[\frac{-A_1(T-T^*)}{A_2 + (T-T^*)}\right]$$

Evaluation Parameter Cross-WLF Model

- D₂ a reference temperature
- theoretically, the temperature where η goes to ∞
- typically D2=Tg, and $\eta = 10^9$ Pa.s
- D₃ defines the pressure sensitivity of D₂

$$T^* = D_2 + D_3 P$$

- A₁ & A₂ WLF parameters
- A₁ defines the temperature sensitivity of viscosity
- A₂ defines change in temperature sensitivity with temperature
- classical WLF parameters are
 - $A_1 = 40.1, A_2 = 51.6; \text{ if } D2 = Tg$
 - not always so for plastics

New models used in Mold $\left[1 + \left(\frac{\eta_0 \dot{\gamma}}{\tau^*}\right)^2\right]^{\left(\frac{1-N}{2}\right)}$ viscosity: Carreau Model $\eta_0 = B \exp\left(\frac{T_b}{T}\right) \exp\left(\beta P\right)$

 $\eta_{0} = B \exp\left(\frac{T_{b}}{T}\right) \exp\left(\beta P\right)$ $\eta \text{ Viscosity } (Pa. \text{sec})$ $\dot{\gamma} \text{ Shear Rate } (\text{sec}^{-1})$ T Temperature (C) P Pressure (Pa) $\text{ Unknowns: } B, T_{b}, \beta, \tau^{*}, N$

- similar to Cross model
- terms have similar relevance
- Carreau Model will give sharper transitions from Newtonian to shear thinning region

If the data follows the model

If the data does not follow the model

rheological data may not be complete

 complete data should contain Newtonian & shear thinning regions

Issues in data fittis

- data must show the right temperature sensitivity trends
- if not, model coefficients are indeterminate
- extrapolation will be dangerous

- not generalized; designed for polymers
- predict the expected trends for polymers
- incorporate both Newtonian and shear-thinning behavior
- do not work well if polymer does not follow expected trend (rare cases)

- predict a particular kind of behavior
- prevent inaccuracies in measured data from affecting the model
- safer to use
- model coefficients have useful interpretations
- are adaptable to master-curves

Conclusions

- we have a wider range of models for simulation
- each has its own benefits
- with new Moldflow formats, we can select the best model.
- model coefficients contain vital information
 - if properly understood, they will save you time and money
- see previous presentations (MUG '96 & MUG'97) for details on how to use evaluation parameters.