

Nadcap

ACCREDITED Certificate# 17231205927 Non Metallic Materials Testino

Beyond Standards: Material Testing and Processing for Successful Simulations of Polymeric Materials (LAW76)

Dr. Daniel Campos Murcia, CAE Specialist

OpenRadioss[™]

LAW76_SAMP: Semi-Analytical Model for Polymers

- 1. DatapointLabs and Applus+ Group
- 2. Overview of LAW_76 SAMP
- **3**. Testing for SAMP
- 4. Calibration of SAMP
- 5. Conclusions

Applus+ Group

Applus+ is a global leader in inspection, testing and certification. Driven by our passion for progress and technological development, we'll keep moving towards a more sustainable future alongside our customers; reenforcing our mission and company motto: **Together beyond standards.**

€2,058M Revenue in 2023

66 Countries in all continents

Accredited

By main international entities

Crash and impact simulation

- More sectors interested in the reduction of prototyping cost and times
- Growing demand for crash and impact simulation applications
- New materials, higher complexity, new needs

LAW76_SAMP: Semi-Analytical Model for Polymers

- SAMP material law was developed at DaimlerChrysler, Sindelfingen, in collaboration with Paul Du Bois and Dynamore, Stuttgart
- It is based on a quadratic yield surface in the σ_{VM} p space where the parameters AO, A1 and A2 are computed via curve definitions that could be directly converted from experimental data
- It includes strain-rate dependencies for tension, shear and compression inputs
- It also includes a damage model. In Radioss this damage can be introduced via ε^f_p (plastic strain at the start of damage) and ε^r_p (plastic strain at the element erosion), or via a damage function

From: Characterization and Material Card Generation for Thermoplastics, M. Hellbig, A. Erhart, A. Haufe. 16th International LS-Dyna User Conferene

Ep

Limitations of LAW76_SAMP

- The equations assume a constant characteristic stress relation during the testing →Triaxiality has to be as close as possible to the theoretical value
- The use of arbitrary defined curves may result in severe convergence problems → Too much freedom is not always good
- Damage model contained in the Radioss implementation doesn't allow to use dependencies on strain-rate or triaxiality, usually not allowing to describe properly the damage and failure evolution under the different deformation modes.
- Execution speed is usually slow because of the slow convergence of the stress's integration, especially when a poorly defined yield surface is introduced
- It requires an iterative process to calibrate this model with constant inputs of new experimental data, especially when combined with more advanced damage models (i.e. Biquad)

LAW76_SAMP: Ready to use card

#RADIOSS STARTER								
#1 2 3 4 5 6 7 8 9 10								
/UNIT/1								
unit for mat								
		kg		mm		ms		
#-	1 -	2 -	3 -	4 -	-	6 -	7 8	- 9 10
/MAT/LAW76/1/1								
LAW76_Material								
#		RHO_I						
		1E-6						
#		E		nu				
		100.0		.3				
#	TAB_IDt	TAB_IDc	TAB_IDs					
	1000	1001	1003					
#		Fscale_t		Fscale_c		Fscale_s		XFAC
		1.000		1.000		1.000		1.000
#		Nu_p	fct_IDpr		Fscale_pr	Fsmooth	Fcut	
		0.5	0		0	1	1e30	
#		EPS_f_p		EPS_r_p				
		0		0				
#f	unct_ID1				Fscale_1			
	0							
#	IFORM	IQUAD	ICONV					
	0	0	1					
#-	1 -	2 -	3 -	4 -	-	6 -	8	- 9 10

Testing process for advanced models

Why is it important to go beyond the standards?

- We need different strain-rates due to the application
- We loose accuracy using the measurement instruments described in the standard
- We need different geometries to capture the real triaxiality state
- We need different environmental conditions
- We need to modify the contacts, grips, fixtures due to the application

Planned test campaign for the calibration of SAMP+BIQUAD model

Test Type	Standard	Specimen shape	Crosshead speed	Gauge
Tensile 0.01/s	ASTM D638-22	ISO type 3 tensile bar	6 mm/min	DIC
Tensile 0.10/s	ASTM D638-22	ISO type 3 tensile bar	60 mm/min	DIC
Tensile 1.00/s	ASTM D638-22	ISO type 3 tensile bar	60 mm/min	DIC
Tensile 10.0/s	ASTM D638-22	ISO type 3 tensile bar	600 mm/min	DIC
Tensile 100/s	ASTM D638-22	ISO type 3 tensile bar	6000 mm/min	video
Compression 0.01/s	ASTM D6641/D6641M-23	Custom	1.3 mm/min	video
Shear 0.01/s	ASTM D5379M-19e1	In-plane shear	2 mm/min	DIC
Notched 0.01/s	ASTM D638-22	Notched R0.125in	2 mm/min	DIC
Flexural QS	ASTM D790-17	ASTM flex bar	1%/min	-
Impact 3.3 m/s	ASTM D3763-23	Plaque	3300 mm/s	-
Punch test	Non-standard	Plaque	34 mm/min	DIC

Extra tests performed for the calibration of SAMP+BIQUAD model

Test Type	Standard	Specimen shape	Crosshead speed	Gauge
Tensile 0.01/s X-Flow	ASTM D638-22	ISO type 3 tensile bar	6 mm/min	DIC
Small Notched 1.00/s	ASTM D638-22	Notched R0.125in	500 mm/min	video
Small Notched 100.0/s	ASTM D638-22	Notched R0.125in	5000 mm/min	video
Large Notched 0.01/s	ASTM D638-22	Notched R0.25in	2 mm/min	DIC
Large Notched 1.00/s	ASTM D638-22	Notched R0.25in	500 mm/min	video
Large Notched 100.0/s	ASTM D638-22	Notched R0.25in	5000 mm/min	Video
Shear 1.00 /s	ASTM D5379M-19e1	In-plane shear	1.5 mm/min	DIC
Shear 100.0/s	ASTM D5379M-19e1	In-plane shear	500 mm/min	DIC

Semi-automated process for SAMP + BIQUAD (simplified diagram)

Cascade workflow

Semi-automated process for SAMP + BIQUAD (simplified diagram)

Parallel workflow

Semi-automated process for SAMP + BIQUAD (simplified diagram)

Optimization algorithm

- 1. Selects a test model from a library
- 2. Imports material card to the selected test model
- 3. Executes simulation in OpenRadioss
- 4. Exports force-disp curves
- 5. Calculate eng. Stress-strain and/or other parameters
- 6. Calculate the error
 - Calculated through R2
 - Calculated through other indicators (max. stress, failure strain...)
- 7. Stores the error and compares with the previous iteration
- 8. Calculate the new parameters/curves
- 9. Creates the new material card and back to 1

OpenRadioss[™] Applus[⊕]

Test data preparation

- 1. Fitting power law models
- 2. Extrapolating strain-rates

$$\sigma = m \cdot \varepsilon^n$$

3. Fitting Biquad law

Intermediate solutions of the optimization process

Fitting power law models

Intermediate solutions of the optimization process

Biquad law models

Different damage models for each strain-rate

Shear Calibration

True Strain [mm/mm]

Flexural

LIEVATAT OCTATH [HRH/HRH]

- SAMP model provides exceptional accuracy in predicting the behavior of unfilled polymers under various loading conditions
- Requires extensive knowledge in calibration
- Flexibility in parameterization can lead to convergence errors and instabilities if not carefully managed
- Lacks a damage model that incorporates strain-rate and triaxiality state dependencies simultaneously
- SAMP is part of our extensive catalog of over 200 Testpaks, all developed over 27 years of collaboration with our clients and industry experts

Certificate # 1242.01 ISO/IEC 17025:2017

Certificate # 17231205927 Non Metallic Materials Testing

Applus DatapointLabs

Contact:

Brian Croop CEO croop@datapointlabs.com

Contact:

Marcia Swan CRM Manager swan@datapointlabs.com

Contact:

Daniel Campos Murcia CAE Engineer dcmurcia@datapointlabs.com