

Insights into the Simulation of Failure of Ductile Plastics

M. Lobdell, B. Croop, and H. Lobo DatapointLabs Technical Center for Materials, USA

automotive CAE Grand Challenge 2017 April 5–6, 2017

1

Company Introduction

We strengthen the materials core of manufacturing enterprises to facilitate their use of new materials, novel manufacturing processes, and simulation-based product development.

Process

- Use best in class test methods for properties
- Apply candidate material models
- Validate against high reliability complex experiments (DIC)

Presentation

- Identification of factors
- Test methods used
- Findings & observations
- Impact on simulation

4

- Non-linear elasticity
- Deviatoric plastic strain occurs prior to yield Lobo& Hurtado (2006)
- No increase in volume strain prior to yield Lobo, Croop, &Roy (2013)
- Onset of volumetric straining at yield Lobo, Croop, &Roy (2013)
- Strain localization coincides with onset of volumetric straining
- Yield surface is not von Mises
- Volumetric and deviatoric behavior in flow region
- Failure is accompanied by rapid volumetric expansion

Other Factors not considered here

- Visco-elastic (time-based behavior)
- Property change over product operational temperature
- Property change with environmental exposure

DIC Operation

DIC Principle

- Speckle pattern is broken into facets (elements)
- Speckle pattern is tracked frame to frame
- Calibration of a volume is performed through measuring calibration panel in various orientations in the test space.
- Strains can be captured on the micro-strain level
- Strain field can be mapped over the actual part image

DIC Utilization in this work

- Local y, x, z strains are measured
- Surface strains for validation of simulation

Obtaining true stress-strain with localized DIC measurement

Absence of linear elastic region (unlike metals)

Presence of visco-elastic behavior (not considered in this work)

automotive

CHALLENG

Incremental increasing load-relaxation cycles: capture unrecovered strain

Determining onset of plasticity

Unable to capture non-linear elastic behavior Cannot correctly capture deviatoric strain prior to yield Cannot capture post-yield volumetric strain

11

Instron 8872 universal testing machine (UTM) 1 mm/min displacement of nose Apply speckle patter to part to allow use of DIC strain capture Two camera DIC to capture 3D strain

CAE GRAND CHALLENGE

Deformed Part

Loaded past yieldObserved symmetric buckling inwards

•Slight indentation of support pins causing stress whitening on the reverse side of the part

Simulation with Abaqus: material model

Polypropylene

- Tensile and Density Test
- Elastic
 - *E* = 1572 [MPa]
 - v = 0.29
- Plastic curve (Right)
- Density
 - *ρ* = 7.9 *E*-06 [tonne/mm3]

Measured at QS speeds

15

Comparison of Simulation to Experiment

- Force vs. loading nose displacement
 - Similar response throughout

DIC Comparison of Simulation to Experiment

- Local strain vs. Displacement
 - Diverges after 2 mm
 - Corresponds to yield on stress-strain curve

POST YIELD BEHAVIOR

© 2017 carhs.training GmbH

18

3D Stress-strain measurements for plastics

19

True stress v. volumetric strain and true strain

True stress calculated from x-z strain Y-strain is localized, true Volumetric strain obtained from YXZ strain Fail strain is measured Classical stress-strain does not correlate

PP

extruded sheets

20

Transverse v. axial strain

X and z strains may not coincide May depend on material and processing

PP

21

PC

Yield behavior in plastics

Yield surface – Available test modes

- Tensile
- Compressive (CLC)
- Shear (classical or losipescu)
- Biaxial

22

ABS, LS-DYNA MAT_024, 100/s, FAIL at 0.44

LS-DYNA MAT_024

- Failure strain is arbitrary
- Much greater than tensile fail strain
- Model extrapolation is needed
- Model cannot predict softening behavior

Falling dart is a biaxial experiment

Measured biaxial fail strain for ABS is 1.8 (Ericchsen Cupping experiment combined with DIC, with advice from Dr. H. Gese.)

SAMP material model

Post-yield volumetric behavior converted to plastic Poisson's ratio

Using FAIL = biaxial fail strain approaches test data Softening behavior is predicted Using triaxiality v. fail strain does not work well

MAT_024 material model fitted with Matereality

MAT_024 Material Model

• Various rate dependency options

VP=1

Fail Strain extrapolated to 1.2

SAMP less important where no softening behavior is seen

Build a post yield material model containing deviatoric and volumetric terms Decouple two effects

- Allow deviatoric straining prior to yield
- Volumetric straining starts at yield

Effect of non von-Mises yield surface should be considered

Look at failure strain as a function of stress triaxiality (eg. SAMP)

- Vital for failure prediction
- Alternately, arbitrary model extrapolation is required
- Not easy to objectively measure fail strain at different stress triaxiality
 - Tensile is feasible
 - Biaxial is feasible

• Shear is not feasible; reverts to tensile mode for ductile plastics Error accumulates due to model infidelities

Focused on "materials in simulation" since 1995

Deep domain expertise

• physics of materials, CAE parameter conversion, software for materials

