

Influence of Material Scatter to Simulation Results with ALTAIR RADIOSS

Marian Bulla

ALTAIR Engineering

automotive CAE Grand Challenge 2020 September 29 - 30, 2020 Hanau, GERMANY

Agenda

Motivation

Material test results: What reality shows

- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- Examples
- Conclusion

Motivation

CRASH is chaotic and material parameter sometimes, too.

But there is a need for a robust response.

 \mathfrak{C}

Agenda

Motivation

Material test results: What reality shows

- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- ► Examples
- Conclusion

What reality shows (real tests):

Applus DatapointLabs

ALTAIR

https://www.datapointlabs.com/

Engineering Stress (MPa)

Material test results: What reality shows

Applus DatapointLabs

https://www.datapointlabs.com/

D.

Altair Compose Business Edition 2020

Simulation results:

Under-estimated material

Over-estimated material

All simulations run stable ③

Applus DatapointLabs

ALTAIR

https://www.datapointlabs.com/

<u>Reference:</u> Bulla, M.; Kolling, S.; Sahraei, E. An Experimental and Computational Study on the Orthotropic Failure of Separators for Lithium-Ion Batteries. Energies 2020, 13, 4399.

Agenda

Motivation

Material test results: What reality shows

- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- ► Examples
- Conclusion

Thickness perturbation – Nodal wise

/RANDON	1								
Block Format Keyword									
Describes the nodal random noise to check stability of model by introducing random noise on nodal coordinates.									
Format									
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
/RANDOM/unit_ID or									
/RANDOM/GRNOD/grnd_ID/unit_ID									
Xalea		Seed							

Usual value for max. random displacement = 1 μ m

Thickness perturbation – Element wise

/PERTURB/PART/SHELL

© 2020 carhs.training gmbh

Block Format Keyword

This option can be used to study the robustness of a design by generating different thickness values for every shell element in the specified part group. The random noise scale factors can have either a normal (Gaussian) distribution or random distribution.

Format (4) (5) (1) (2) (3) /PERTURB/PART/SHELL/ID perturb_title 34% Deviation F_Mean grpart_ID parameter 14% -2 S.D. -1 S.D. 0 Mean

If Idistri=1, the distribution of the scale factors will be random.

If Idistri=2, the normal distribution of the scale factors will have the following probability density function.

A

1: test_2017_01_ Loadcase 1 : Time = 0.0000e+000 : Frame

Thickness perturbation – Part wise (material parameter and thickness)

Failure perturbation – Integration point wise

#

Failure perturbation – Integration point wise

NEW advanced failure criteria (BiQuad) At least: 0 fitting parameter needed !

Adding perturbation to fracture limit !

PERTURBATION ID

PARTS: 4

INPUT MEAN VALUE 1.00000000000

INPUT SEED VALUE FAILURE CRITERIA

11.20916793443

0.900000000000

DISTRIBUTION OF SCALE FACTORS APPLIED TO C3 VALUE OF FAILURE CRITERIA ID=

GENERATED MEAN VALUE 0.9999718992460

GENERATED SEED VALUE

GENERATED STANDARD DEVIATION . . . 3.5590713131887E-02

4711

#######

######## ######### ########## ########## ###########

########### **** #############

**** ******** **** ********* ****************

***** *****

***** ****

99288

1.100000000000

automotive

Agenda

Motivation

Material test results: What reality shows

- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter

Examples

Conclusion

Failure perturbation – Integration point wise

Failure perturbation – Integration point wise

Failure perturbation – Integration point wise: /FAIL/ALTER

<u>Reference:</u> C. Alter, S. Kolling, J. Schneider: "An enhanced non–local failure criterion for laminated glass under low velocity impact." International Journal of Impact Engineering 109: 342-353, 2017.

© 2020 carhs.training gmbh

TECHNISCHE HOCHSCHULE MITTELHESSEN

Failure perturbation – Integration point wise: /FAIL/ALTER

TECHNISCHE HOCHSCHULE MIT

Comparison of measured and computed acceleration.

(RADIOSS simulation results using /FAIL/ALTER + enhancement by C. Brokmann)

Reference: C. Alter, S. Kolling, J. Schneider: "An enhanced non-local failure criterion for laminated glass under low velocity impact." International Journal of Impact Engineering 109: 342-353, 2017.

150

Frontal Impact on Rigid wall

Model Unit: mm, s, Ton

Initial Velocity: 12.3 m/s

Total Mass : 1.219 Ton

Random Noise: 1.0 E-6 mm

Total	
Elem. 1D	4243
Elem. 2D	1055037
Elem. 3D	2860
Total Elem.	1062140

LTA

Δ

<u>25 Runs</u>

Variation:

Random Noise: 1.0 E-6 mm

Seed variation (0.00 to 0.90)

Overall Maximum RigidWall Force

What is the Source of this results Dispersion (in time and space)?

automotive CAE GRAND CHALLENGE

Target: Increase the Robustness – Example #1

Results: What is the Source (in time and space) of this results Dispersion ?

→ Small variations can lead to big differences in final results

"Physical Variable": Thickness of the Front Bumper Cross Beam

- **Original Thickness: 1.956 mm**
- ➔ Increasing the thickness
- ≻ +10%: 2.122 mm
- ≻ +100% : 3.912 mm

Front bumper cross beam

Conclusion after 1st run:

Increasing the thickness of the bumper beam leads to

> Increase of the wall force

➔ Sounds logically

© 2020 carhs.training gmbh

Case study NEON_1M sensitivity Random Noise 1.0E-6 mm

original_case 4

+10% thickness bumper case 4

Conclusion after 10 runs

Increasing the thickness of the bumper beam leads to

- Decrease of the wall force
- Only 1 run leads to wrong conclusion !

automotive

🔶 +10%l mean case

Norm max SAE 180 acceleration "brake caliper right"

Agenda

Motivation

> Material test results: What reality shows

- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- ► Examples
- Conclusion

Huge simulation models are not an issue, today !

25 million elements model : Time = 0.0000e+000s

33

Conclusion

CRASH is chaotic !

automotive CAE GRAND CHALLENGE

Material properties are **not** always homogeneously distributed within a part.

They have always tolerances.

A <u>DESIGN</u> IS ROBUST IF ITS SENSITIVITY TO SMALL CHANGES IS LOW

- Robustness is more important than optimality. A « good enough » robust solution is better than a sensitive optimal solution.
- Robustness of design should be a key objective for optimization
- REPEATABILITY is important in the design process (with /PARITH/ON, Radioss delivers always the same results, when run is started twice)
- Uncertainties (material, geometric tolerances, ...) must be accounted for

RADIOSS offers predictive <u>material</u> and <u>failure</u> models, applicable for modeling and considering most of known physical effects.

→ Anyway, there are still a lot to opportunities for improvements ! Lot of work ahead !

→ We are fully open for participation in research projects and new developments !

ALTAIR Thank you for your attention !

Open for questions...

Marian Bulla

Phone: +49 (0)221-1 577 778-583

E-Mail: bulla@altair.de

