Influence of Material Scatter to Simulation Results with ALTAIR RADIOSS

Marian Bulla
ALTAIR Engineering

automotive CAE Grand Challenge 2020
September 29 - 30, 2020
Hanau, GERMANY
Agenda

- Motivation
- Material test results: What reality shows
- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- Examples
- Conclusion
CRASH is chaotic and material parameter sometimes, too. But there is a need for a robust response.
Agenda

- Motivation
- Material test results: What reality shows
- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- Examples
- Conclusion
What reality shows (real tests):

DP600 – Real test results: Material supplier A vs. supplier B
Material test results: What reality shows

https://www.datapointlabs.com/

© 2020 carhs.training gmbh
Material test results: What reality shows

Material instability !!!

https://www.datapointlabs.com/

© 2020 carhs.training gmbh
Material test results: What reality shows

Material instability !!! 😞
Material test results: What reality shows

(Vide)
Material test results: What reality shows

Simulation results:

Under-estimated material

Over-estimated material

All simulations run stable 😊
Material test results: What reality shows

https://www.datapointlabs.com/

© 2020 carhs.training gmbh
Material test results: What reality shows

Resultant failure in transverse direction

Resultant failure in machine direction

© 2020 carhs.training gmbh
Agenda

- Motivation
- Material test results: What reality shows
- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- Examples
- Conclusion
Thickness perturbation – Nodal wise

Usual value for max. random displacement = 1 µm
Thickness perturbation – Element wise

This option can be used to study the robustness of a design by generating different thickness values for every shell element in the specified part group. The random noise scale factors can have either a normal (Gaussian) distribution or random distribution.

Format:

<table>
<thead>
<tr>
<th>ID</th>
<th>ID</th>
<th>C0</th>
<th>C1</th>
</tr>
</thead>
</table>

*PERTURB/PART/SHELL

Block Format Keyword

If idistri=1, the distribution of the scale factors will be random.

If idistri=2, the normal distribution of the scale factors will have the following probability density function.
Thickness perturbation – Part wise (material parameter and thickness)

(= Monte Carlo)
NEW advanced failure criteria (BiQuad)
At least: 0 fitting parameter needed!

Adding perturbation to fracture limit!

What reality shows:
- Small scattering in max. stress but
- Big scattering in rupture strain
NEW advanced failure criteria (BiQuad)

At least: 0 fitting parameter needed!

Adding perturbation to fracture limit!
Agenda

- Motivation
- Material test results: What reality shows
- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- Examples
- Conclusion
Failure perturbation – Integration point wise
Failure perturbation – Integration point wise

Contour Plot
Stress von Mises, Material case 1: Time = 2.000E+001: Frame 11
Elemental system
Simple Average
Max = 3.389E+02
Node 269
Min = 0.000E+00
Node 927

Contour Plot
Stress von Mises, Material case 1: Time = 2.000E+001: Frame 11
Elemental system
Simple Average
Max = 3.389E+02
Node 269
Min = 0.000E+00
Node 927

Contour Plot
Stress von Mises, Material case 1: Time = 2.000E+001: Frame 11
Elemental system
Simple Average
Max = 3.389E+02
Node 269
Min = 0.000E+00
Node 927

Contour Plot
Stress von Mises, Material case 1: Time = 2.000E+001: Frame 11
Elemental system
Simple Average
Max = 3.389E+02
Node 269
Min = 0.000E+00
Node 927

Contour Plot
Stress von Mises, Material case 1: Time = 2.000E+001: Frame 11
Elemental system
Simple Average
Max = 3.389E+02
Node 269
Min = 0.000E+00
Node 927

Contour Plot
Stress von Mises, Material case 1: Time = 2.000E+001: Frame 11
Elemental system
Simple Average
Max = 3.389E+02
Node 269
Min = 0.000E+00
Node 927
Failure perturbation – Integration point wise: /FAIL/ALTER

© 2020 carhs.training gmbh
Failure perturbation – Integration point wise: /FAIL/ALTER

Comparison of measured and computed acceleration.

Target: Increase the Robustness – Example #1

- **Frontal Impact on Rigid wall**

 Model Unit: mm, s, Ton

 Initial Velocity: 12.3 m/s

 Total Mass: 1.219 Ton

 Random Noise: 1.0×10^{-6} mm

 ![Simulation Images]

 - $T = 00.00\ms$
 - $T = 80.00\ms$
Target: Increase the Robustness – Example #1

25 Runs

Variation:
Random Noise: 1.0E-6 mm
Seed variation (0.00 to 0.90)

Overall Maximum RigidWall Force

What is the Source of this results Dispersion (in time and space)?
Target: Increase the Robustness – Example #1

Results: What is the Source (in time and space) of this results Dispersion?

Small variations can lead to big differences in final results.

- Sub frame hits Engine at ~ 40 ms
- Sub frame does NOT hit Engine at ~ 40 ms
Target: Increase the Robustness – Example #2

“Physical Variable”: Thickness of the Front Bumper Cross Beam

Original Thickness: 1.956 mm

- Increasing the thickness
 - +10%: 2.122 mm
 - +100%: 3.912 mm
Target: Increase the Robustness – Example #2

Conclusion after 1st run:

Increasing the thickness of the bumper beam leads to

- Increase of the wall force

> Sounds logically
Target: Increase the Robustness – Example #2

Conclusion after 10 runs

Increasing the thickness of the bumper beam leads to

- **Decrease of the wall force**

- Only 1 run leads to wrong conclusion!

The model with 10% thickness increase is more sensitive than the base model
Target: Increase the Robustness – Example #2

![Case study NEON_1M sensitivity](image)

Base model

Model with 10% thickness increase

Model with 100% thickness increase

- Norm max contact force wall
- Norm max SAE 180 acceleration "brake caliper right"
Agenda

- Motivation
- Material test results: What reality shows
- Scatter in simulations
 - Geometrical scatter
 - Material and failure parameter scatter
- Examples
- Conclusion
Huge simulation models are not an issue, today!

25 million elements model:
Time = 0.0000e+000s
Conclusion

CRASH is chaotic!

Material properties are not always homogeneously distributed within a part. They have always tolerances.

A DESIGN IS ROBUST IF ITS SENSITIVITY TO SMALL CHANGES IS LOW

- Robustness is more important than optimality. A « good enough » robust solution is better than a sensitive optimal solution.
- Robustness of design should be a key objective for optimization
- REPEATABILITY is important in the design process (with /PARITH/ON, Radioss delivers always the same results, when run is started twice)
- Uncertainties (material, geometric tolerances, ...) must be accounted for

RADIOSS offers predictive material and failure models, applicable for modeling and considering most of known physical effects.

Anyway, there are still a lot to opportunities for improvements! Lot of work ahead!

We are fully open for participation in research projects and new developments!
Thank you for your attention!

Open for questions...

Marian Bulla
Phone: +49 (0)221-1 577 778-583
E-Mail: bulla@altair.de