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A look back
Advent of simulation- early successes
Melt-solid transitions- the case for a 
unified material model
Post-fill- PVT and the prediction of 
shrinkage
Viscous heating- impact on flow behavior, 
degradation
Why CRIMS has to work so hard
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Advent- pre 1990
Solid scientific study into 
rheology (Hieber et al)
Very strong rheological 
models
Relatively simple simulation-
fill patterns

u Modest effect of phase change
u Rheology, thermal property 

controlled behavior
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Post-Filling Challenges
Simulation highly sensitive to very 
slightly varying property behavior 
(PVT)
u Location/nature of transition
u Absolute values of PVT properties
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The PVT controversy
C-MOLD- process is in cooling-
measure PVT in cooling
Moldflow- Measure PVT while 
heating



TestPaks.com

The PVT controversy-
Realities
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Accounting for rate with DSC
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Limitations
Good for quiescent situations
Supercooling effect overpredicted
when there is flow
u Transition is closer to heating 

transition when shear effects present
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What about high-rate PVT
Solid state data in PVT cooling will 
always be wrong
u No instrument can reproduce the 

unique frozen layer morphology or 
shear state of the injection molding 
process
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Current Compromise
Use PVT heating data
u Reasonable transition location
u Good representation of solid state PVT 

behavior
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Shrinkage in simulation
Change in volume 
in PVT data on 
cooling
Starts at melt-solid 
transition- Ttrans
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Consequences
Small changes in Ttrans=large 
change in shrinkage
Must be grounded in PVT data of 
an injection-molded part
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Melt-Solid transition
DSC based methods
u Easy to get high cooling rates
u Quiescent material

Shown to be not-representative
u Transitions are shear rate dependent 
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Melt-Solid transition
DMA based methods
High shear rate can be applied
Slower cooling rates
Also measures temp sensitivity of 
viscosity
Set Ttrans based on modulus-
material too stiff to flow

(See Lobo MUG2000)
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DMA for Semi-crystalline plastic
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Unified Material Model
Capillary Viscosity at Process temp
DMA cooling experiment at slow 
rate high frequency
u Ttrans, b5
u Temp sensitivity of viscosity (D1, D2)

PVT in heating at same slow rate
Thermal conductivity and specific 
heat transitions shifted to Ttrans


