Viscoelasticity, Creep and Fiber-filled Materials

expert material testing | CAE material parameters | CAE Validation | software & infrastructure for materials | materials knowledge | electronic lab notebooks

Definitions of creep and viscoelasticity

- Creep is the change that occurs to a material due constant load
 over time
 - Depends on applied load
 - Depends on temperature/environment
- Stress relaxation is the change that occurs to a material due to constant deformation over time
 - Depends on applied strain
 - Depends on temperature/environment
- Viscoelasticity is the property consisting of both elastic behavior and flow (plastic) behavior, in which time varies the behavior of each component
 - Depends on time/frequency
 - Depends on load/strain
 - Depends on temperature/environment

Effect of temperature

- Properties and dependencies change with temperature
 - Modulus
 - Ductile-brittle transitions
 - Rate dependency

Effect of environment: in-vivo

• Saline solution at body temperature

Creep behavior

- Primary
 - Short time
 - Loading phase transient
- Secondary
 - Sustained uniform strain
 - Handled by creep models
- Tertiary
 - Localization and failure
 - Creep rupture

Creep modeling

- Creep strain vs. time, fit to time hardening model
 - Minimum 3 stress levels
 - Typically 1000 hours
 - Can incorporate temperate but best handled as individual models for each temperature (more stable/accurate)
 - Plastic deformation
 - ASTM D2990 / ISO 899

strengthening the materials core of manufacturing enterprises

Stress relaxation

- Stress relaxation
 - Stress/Modulus will relax over time
 - Logarithmic behavior
 - Typically 1000 hours
 - Plastic deformation
 - ASTM D6147

Linear-Linear Scaling

Viscoelasticity

- In small strain (linear viscoelastic) situations
 - Applied strain (stress) is recoverable
 - Frequency or time based measurements
- A time-temperature correlation exists
 - Higher temperature = longer time
 - Lowering temperature = short time

DMA (dynamic mechanical analysis) operation

- Force or displacement control
- Dynamic or constant application

Example of force based DMA

$$G' = rac{\sigma_0}{arepsilon_0}\cos\delta \ G'' = rac{\sigma_0}{arepsilon_0}\sin\delta$$

Derivation of dynamic modulii

TTS (time-temperature superposition)

- Takes advantage of both time and temperature sensitivity of material
 - Measure frequency or time sweep at multiple temperautes
 - Shift curves in time/freq domain
 - Generate a mastercurve at times/freq higher than possible to test
 - Also generate temperature sensitivity

Torsional mode

- Torsional DMA
 - Temperature: -125 to 600°C
 - Frequency: 0.01 to 500 rad/s
 - Steady or dynamic modes
 - Torque range: 2 to 2000 gm-cm
- Specimens
 - 25 mm diam. Disc
 - Torsional (flex) bar
- Data
 - G'-G" data tan delta
 - Shear stress relaxation

Tension/compression mode

- Dynamic tensile-compression
 - Frequency: 0.01-200 Hz
 - Load: 0-250 N
 - Crosshead speed 0-3 m/s
 - Displacement: ±12.7 mm
 - Temperature: -80 to 250C
- Specimens
 - ASTM type V tensile bar
 - Compression cube (25mm depending on stiffness)
- Data
 - E' E" (tensile loss/storage modulus) tan delta
 - Tensile relaxation modulus E f(t)

PTFE mastercurve (stress relaxation)

- Caution should be exercised in using very large time scale data
 - Environment reaction of material (deterioration of material, chemical exposure, etc.)
 - Assumes all things are constant
 - Beware of transition temperatures (TTS does not work)

Viscoelasticity & environmental effects

• In-vivo stress relaxation for hip replacement material

Modulus v. Time Mastercurve

Viscoelastic models

- Time-based Prony series $G(t) = G_0 - \sum_{i=1}^N G_i [1 - \exp(-t/\tau_i)]$
- Frequency-based

$$G' = G_0 \left(\alpha_{\infty} + \sum \left(\frac{\alpha_i^G (\tau_i^G)^2 \omega^2}{1 + (\tau_i^G)^2 \omega^2} \right) \right)$$

$$G'' = G_0 \left(\sum \left(\frac{\alpha_i^G \tau_i^G \omega}{1 + (\tau_i^G)^2 \omega^2} \right) \right)$$

Viscoelastic models

- Normalized modulus data fit to 6-parameter Prony series
- Used for simulating short or long term events
- Can apply WLF shift factors for different temperatures

$$G(t)=G_0-\Sigma_{i=1}^NG_i[1-\exp(-t/ au_i)]$$

Prony series

$$\log(a_T) = rac{-C_1(T-T_{
m r})}{C_2+(T-T_{
m r})}$$
WLF equation

Limitations

- Depends on linear viscoelastic theory
- Can predict non-linear effects
- Cannot predict large strain deformation
- Cannot predict failure
- Great caution when used with hyperelasticity or other large deformation model

Fiber Filled Plastics and the Need for Injection Molding Simulation

expert material testing | CAE material parameters | CAE Validation | software & infrastructure for materials | materials knowledge | electronic lab notebooks

Fiber-filled plastics

- Spatial orientation of fibers
 - Properties vary spatially
 - Significant property differences with orientation
- Can approximate:
 - Worst case: use cross-flow data
- Use third party software to map then implement orientation effects to FEA
 - Injection molding simulation of part to capture fiber alignment
 - Digimat or Helius to impart material properties
 - Send to FEA

Source:e-Xstream

Injection molding simulation

- Simulate injection molding process
 - Mold design
 - Fiber orientation
 - Final part geometry (warp/shrink)
 - Frozen stresses
- Third party software
 - Autodesk Moldflow
 - Moldex 3D
 - Sigmasoft

Required testing

- Viscosity
- Specific heat
- DSC transition temperatures
- Thermal conductivity
- PVT
- Linear shrinkage
- Viscoelastic properties

Rheometer measurement of viscosity

- Capillary rheometer is used
- Material is extruded through a restriction of known geometry (extremely high tolerance dies)
- Temperature and flow rate are controlled
- Pressure drop across the restriction is used to determine viscosity as a function of shear rate and temperature

Viscosity properties

• As shear rate increases, viscosity decreases

Viscosity properties

• As temperature increases, viscosity decreases

Viscosity measurements

- Apparent Viscosity
- Shear rate:
 - Shear stress:
 - Shear viscosity:
- Corrections to viscosity
 - Reservoir and friction losses (transducer located at die)

 $\dot{\gamma}_a = \frac{32Q}{\pi d^3}$

 $\tau_{w} = \frac{\Delta pd}{4L}$

 $\eta_a = \frac{ au_w}{\dot{\gamma}_a}$

- End pressure drop (Bagley)
- Non-parabolic velocity (Rabinowitsch correction)

Bagley correction testing

- Bagley correction
 - Perform viscosity measure on two different die ratios at equal shear rates
 - Evaluate pressure differences between die geometries (capillary diameter remains the same)
 - $\tau = R/2(dP/dL)$

Viscosity modeling

- Very strong rheological models
 - Cross WLF, Cross Arrhenius
 - Combines a model of shear rate dependency with temperature dependency
 - Allows us to predict beyond testing range

Specific heat

- DSC (differential scanning calorimeter)
 - Small samples sizes (7-15 mg)
 - Differential heat required to raise the temperature of the sample as compared to a reference
 - Performed in cooling to replicate molten material cooling to solidification
- Used in the simulation to determine how much energy must be dissipated to promote solidification

Thermal conductivity

- A measure of how well a material transfers heat
 - Measured using transient line source
 - Measured in melt and solid state
 - Different behaviors for semi-crystalline and amorphous

Measure time to dissipate the heat pulse away from probe

Thermal conductivity

- Semi-crystalline materials show an increase in thermal conductivity in solid state
- Amorphous materials show a decrease in thermal conductivity in solid state
- The addition of fillers increase thermal conductivity
- Thermal conductivity of polymers is much lower than metals
 - Copper: 400 W/mK
 - ABS: 0.176 W/mK

Density as a function of PVT (pressure, volume and temperature)

- Isobaric cooling scan (for semi-crystalline materials)
 - Need to accurately capture the onset of crystallization
 - Much longer run times
- Isothermal heating scan (for amorphous materials)
 - No crystallization so transition is independent of mode
 - Much faster (relatively)
- Pressures of 10 200 Mpa
- Measure both solid and melt domains

PVT testing

- Difficult and time consuming test
 - Initial density at ambient conditions
 - Mercury used as confining fluid
 - High temperatures and pressures
 - Complex datasets
 - True hydrostatic state

PVT test data

- Semi-crystalline material
 - Transition region is critical
 - Rise in temp. = rise in spec. vol.
 - Rise in press. = drop in spec. vol.

PVT test data

- Amorphous material
 - Transition is not dependent on mode

PVT modeling

- 13 parameters
- Three groups of paramters
 - b5 is the transition of the low pressure
 - b6 is the slope of the transition
 - b7, b8, and b9 describe the shape of the crystalline transition

Two-Domain Tait PVT Model: b5 4.202E+02 K 2.000E-07 K/Pa b6 1.081E-03 m³/kg b1m 7.707E-07 m³/kg•K b2m 6.864E+07 Pa b3m 3.209E-03 1/K b4m 1.011E-03 m³/kg b1s 4.442E-07 m³/kg•K b2s 1.397E+08 Pa b3s b4s 1.752E-03 1/K 7.064E-05 m³/kg b7 8.027E-02 1/K b8 4.311E-08 1/Pa b9

strengthening the materials core of manufacturing enterprises

1.20 1.18

1.16

1.14

1.10 1.08 1.06 1.04 1.02 1.00 0.98 0.96 0.94 0.92 0.90

12

Specific Volume (cm^3/gm/

& MPa

5 MPa

140 MPa

200 MPa

50

100

150

Temperature (°C)

200

250

300

PVT modeling, cont.

- b1m is the specific volume at b5
- b2m is the slope of the melt region
- b3m is the pressure sensitivity or spread of the melt fit
- b4m is the pressure sensitivity of the melt state slope
- b1s through b4s are the same but for the solid state

Two-Doma	ain Tait PVT Model:
b5	4.202E+02 K
b6	2.000E-07 K/Pa
b1m	1.081E-03 m ³ /kg
b2m	7.707E-07 m ³ /kg•K
b3m	6.864E+07 Pa
b4m	3.209E-03 1/K
b1s	1.011E-03 m ³ /kg
b2s	4.442E-07 m ³ /kg•K
b3s	1.397E+08 Pa
b4s	1.752E-03 1/K
b7	7.064E-05 m ³ /kg
hß	8 027E-02 1/K

Thermal expansion

- TMA (thermo-mechanical analyzer)
 - 10 x 10 mm x thickness plaques
 - Low expansion quartz probe and station
 - Constant heating rate
 - Slope of δL over temperature
- Orientation
 - One direction for no fiber
 - Two directions for fiber-filled

Thermal expansion test data

- Data presented as calculated slopes that are constant over the test range
 - Plot of probe position vs. temperature ensures linear relationship
- Anisotropic materials
 - · Measurements across the flow always higher
 - Fibers have less thermal expansion than polymer

CLIE			
flow direction (a1)			
	0° to 60°C		
replicate 1	6 x 10-6 / °C		
replicate 2	6 x 10-6 / °C		
replicate 3	6 x 10-6 / °C		
average	6 x 10-6 / °C		
cross-flow	direction (a.2)		
cross-flow	direction (a.2) 0° to 60°C		
cross-flow replicate 1	direction (α.2) 0° to 60°C 34 x 10-6 / °C		
cross-flow replicate 1 replicate 2	direction (α.2) 0° to 60°C 34 x 10-6 / °C 33 x 10-6 / °C		
cross-flow replicate 1 replicate 2 replicate 3	direction (α.2) 0° to 60°C 34 x 10-6 / °C 33 x 10-6 / °C 31 x 10-6 / °C		
cross-flow replicate 1 replicate 2 replicate 3 average	direction (a.2) 0° to 60°C 34 x 10-6 / °C 33 x 10-6 / °C 31 x 10-6 / °C 33 x 10-6 / °C		

Mechanical properties

- Tensile tests performed on a UTM
 - Temperature chamber
 - Axial and transverse strains
- Measure only the unfilled polymer
 - Fibers added in with the micro-mechanical model
- Stress strain curves at multiple temperatures
 - Modulus (σ/ϵ)
 - Poisson's ratio (ε2/ε1)
 - Viscoelastic properties

Problematic Materials

- Moisture sensitive materials
 - Improperly dried materials cause reduction in viscosity
 - Over-dried materials cause a rise in viscosity
 - PET, PA, PC, PBT etc.
- Highly filled materials
 - Can "log jam" the die entrance
 - · Special dies must be used
 - Higher scatter in test data requires engineering judgment on behavior
- Thermally unstable materials
 - Require very careful attention to residence times
 - PVC

Basic DIGIMAT MX TestPak protocol

- Mold 100 X 300 X 3.16mm plaques
 - Edge gated on 100 mm end
 - Long flow length
 - Fully developed flow
 - Highly fiber orientation
- Cut test specimens by CNC
- 5 specimens each (0°, 90°, other orientations...)
- Obtain true stress-strain data
- Calibrate material model

DIGIMAT MX TestPak outputs

- CAD drawings of plaque and specimens
- Plaque molding conditions
- Injection molding material file
- True stress strain data (M-204) at 23°C
 - 0°, 90° orientation from plaque
- DIGIMAT MX reverse engineering
 - Data is ready for FEA

DIGIMAT TestPak options

- Additional directions (10°, 20°, 45°)
- Thermomechanical (from –40° to 150°C)
- Strain-rate dependent (0.01 to 100/s)
- 3-point bend data (quasi-isotropy)
- Tensile bar data (coarse fit)
- Viscoelasticity
- Low cycle fatigue (Lemaitre-Chaboche)
- High cycle fatigue (under development)

Example: airbag housing

Source:e-Xstream

Impact on failure

With Fiber Orientation

Choosing the right properties

- Properties change over product operational temperature
- Properties change with environmental exposure
- Orientation (fiber-filled plastics)
- Viscoelastic (time-based behavior)
 - Creep
 - Stress relaxation
- Effect of strain rate

