

Material Testing and Calibration Strategies for Material Models of Polymers, Foams, and Composite Materials

Applus, DatapointLabs & Materials Characterization

Testing

Engineering

[2020]

Applus Overview:

Relevant Divisions: Product Development & Validation

Relevant Partner Laboratories: **Materials Characterization & Quality Assurance**

LABORATORIES DIVISION

Product/System Certification

Multidisciplinary Laboratories

IDIADA DIVISION (AUTOMOTIVE)

- Design & Engineering
- Data Analysis & Simulation
- Homologation Services
- Testing & Proving Ground

USA | Ithaca

USA | Detroit

€1,558B revenue | **23,387** staff | **70+ countries**

Spain | Barcelona

France | St. Etiènne

Germany | Bremen

Norway | Bryne

China | Shanghai

OpenRadioss[™]

DatapointLabs Summary Overview (I)

- Experience
 - 27 years of experience in materials testing and characterization
 - ISO 17025:2017 accredited, operating on an end-end digital platform
 - Nadcap accredited [Aerospace / Defense] (Metallic/Non-Metallic Materials Testing)
- Operations
 - Testing 2000+ materials per year
 - Standard 5-day turnaround
 - Comprehensive one-stop testing capability
 - 168 unique tests: all aspects of mechanical, thermal and rheological characterization

Nadcap

ACCREDITED Certificate # 17231205927 Non Metallic Materials Testi

DatapointLabs Summary Overview (II)

- Capabilities
 - Materials: plastics, composites, foam, rubber, metals, additive materials, films, adhesives
 - May be characterized over a wide range of temperature and environmental conditions (elevated/cryogenic, heat aging, moisture conditioning, weathering, fluid exposure, invivo)
 - Characterize non-linear and post-yield behavior, dynamic situations (drop, crash, impact), hyperelasticity (rubber, foams), time-based behavior (creep, stress relaxation, viscoelasticity)
- Clientele
 - Global clientele of more than 1,800 companies in 49 countries
 - Market leader in materials testing for CAE simulation
 - Recognized as accredited materials test lab by leading OEMs

Materials Testing for Product Development

TestCart

Comprehensive online catalog and order system for 168 unique tests characterizing physical, thermal and flow properties of materials for use in R&D and product development

metals, plastics, composites, rubber, foam, rubber, films

TestPaks®

Material testing and material parameter conversion to generate 179 material cards for 36 simulation (CAE) programs, including finiteelement analysis, crash and drop-test simulations, injection-molding and other process simulations

CAETestBenchTM

Validate your simulation against a physical part, created and tested using a rigid protocol, which can be accurately replicated in your solver – probe simulation accuracy and quantify its ability to replicate the test

Validations range from simple tensile modes to more complex, multi-axial modes, impact and failure

Why material models matter

- Tailored material models are essential to ensure simulation results closely match real-world material behavior
- Untailored models can lead to inaccurate predictions → costly design failures or over-engineering
- Reduced need for physical testing → faster product development

The Three Material Classes

Material	Key properties	Simulation Challenges	Applications
Polymers	Lightweight Ductile Viscoelastic Temperature Strain-rate sensitive	Nonlinear deformation Strain-rate dependency Damage evolution	Car bumpers, packaging, medical devices
Foams	Compressible Energy-absorbing Elastic region Plateau region Densification region	Capturing large Deformations Rate sensitivity Low Poisson's ratio	Helmet padding, vehicle interiors
Composites	Anisotropic High strength-to-weight ratio Layered structure Brittle failure	Multi-directional stiffness Damage progression Delamination	Aircraft fuselages, drone arms, blades

Material Models

LAW76 SAMP

Yield surface as function of pressure

LAW70 Foam_Tab

0 Strain ε > 70%

Compression response of foam materials

MAT058 model for CFRP*

Damage evolution of MAT058 vs MAT054

*LSDYNA model

Calibration workflow: Polymers

Optimization process required

Calibration workflow: Foams

Reduce the data

Extrapolation

Filtering the first derivative

Calibration workflow: Composites

Optimization process required

For more details about this work, please visit https://www.knowmats.com/Post/View/1204

Validation: Polymers

Impact Test

For more details about this work, please visit https://www.knowmats.com/Post/View/1206 OpenRadioss™

Flexural Test

Validation: Foams

Compression Test

For more details about this work, please visit https://www.knowmats.com/Post/View/1201

Impact Test

Pure modes validation for each orientation

For more details about this work, please visit https://www.knowmats.com/Post/View/1204

OpenRadioss[™]

Summary of findings

Material	Key Calibration Challenges	Best Practices & Lessons Learned
Polymers	Strong strain-rate dependence Damage evolves progressively Yield surface needs multi-axial data	Use DIC + high-speed cameras to capture full-field strain under dynamic load Include notched tests to define hydrostatic stress behavior Iteratively refine yield surface using inverse modeling
Foams	Large deformations and densification behavior Rate sensitivity varies non-linearly Difficult to extract tension data	Focus on compressive and impact testing Fit rate-dependence with power/exponential laws Use extrapolation methods Use the first derivative filtering technic
Composites	Anisotropic properties require directional testing Complex failure modes (fiber, matrix, delamination) Model needs ply-level & laminate-level accuracy	Perform tests in 0°, 90°, ±45° Use failure surface theories like Chang-Chang, Tsai-Wu Validate with impact & delamination-sensitive tests

Thank You!

Brian Croop CEO & Laboratory director

brian.croop@applus.com +1 607 266 0405 Barbara Leichtenstern Customer Relations & Business Development Manager – Europe Daniel Campos Murcia CAE Engineer

barbara.leichtenstern@applus.com +353 86 898 0355

daniel.campos@applus.com +34 687 117 967

Expert Material Testing

www.datapointlabs.com www.knowmats.com www.matereality.com www.appluslaboratories.com